File: grpnames.gi

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (1107 lines) | stat: -rw-r--r-- 36,327 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
#############################################################################
##
#W  grpnames.gi                                                   Stefan Kohl
##                                                             Markus Pschel
##                                                            Sebastian Egner
##
#H  @(#)$Id: grpnames.gi,v 4.9.2.5 2006/02/15 10:11:34 stefan Exp $
##
#Y  Copyright (C) 2004 The GAP Group
##
##  This file contains a method for determining structure descriptions for
##  given finite groups and implementations of related functionality.
##
##  The purpose of this method is to give a human reader a rough impression
##  of the group structure -- it does neither determine the group up to
##  isomorphism (this would make the description for larger groups quite long
##  and difficult to read) nor is it usually the only ``sensible''
##  description for a given group.
##
##  The code has been translated, simplified and extended by Stefan Kohl
##  from GAP3 code written by Markus Pschel and Sebastian Egner.
##
Revision.grpnames_gi :=
  "@(#)$Id: grpnames.gi,v 4.9.2.5 2006/02/15 10:11:34 stefan Exp $";

#############################################################################
##
#M  DirectFactorsOfGroup( <G> ) . . . . . . . . . . . . . . .  generic method
##
InstallMethod( DirectFactorsOfGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  N, facts;

    if not IsFinite(G) then TryNextMethod(); fi;
    N := Difference(NormalSubgroups(G),[TrivialSubgroup(G),G]);
    facts := First(Combinations(N,2),
                   norms -> Product(List(norms,Size)) = Size(G)
                            and IsTrivial(Intersection(norms)));
    if   facts = fail
    then return [ G ];
    else return Union(List(facts,DirectFactorsOfGroup)); fi;
  end );

#############################################################################
##
#M  SemidirectFactorsOfGroup( <G> ) . . . . . . . . . . . . .  generic method
##
InstallMethod( SemidirectFactorsOfGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  Hs, Ns, H, N, sizeH, sizeN, firstHN, HNs;

    if not IsFinite(G) then TryNextMethod(); fi;

    # representatives of non-1-or-G subgroups
    Hs := ConjugacyClassesSubgroups(G);
    Hs := List(Hs{[2..Length(Hs)-1]}, Representative);

    # non-1-or-G normal subgroups
    Ns := Reversed( Filtered(Hs, H -> IsNormal(G, H)) );

    # find first decomposition
    firstHN := function ()

      local H, N, sizeNs;

      sizeNs := List(Ns, Size);
      for H in Hs do
        if Size(G)/Size(H) in sizeNs then
          for N in Filtered(Ns, N -> Size(N) = Size(G)/Size(H)) do
            if IsTrivial(NormalIntersection(N, H)) then
              return Size(H);
            fi;
          od;
        fi;
      od;
      return 0;
    end;

    sizeH := firstHN();
    if sizeH = 0 then return [ ]; fi;

    # find all minimal decompositions
    sizeN := Size(G)/sizeH;
    HNs := [ ];
    for H in Filtered(Hs, H -> Size(H) = sizeH) do
      for N in Filtered(Ns, N -> Size(N) = sizeN) do
        if IsTrivial(NormalIntersection(N, H)) then
          Add(HNs, [H, N]);
        fi;
      od;
    od;
    return HNs;
  end );

#############################################################################
##
#M  DecompositionTypesOfGroup( <G> ) . . . . . . . . . . . . . generic method
##
InstallMethod( DecompositionTypesOfGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  AG, a,  # abelian invariants; an invariant 
           CS,     # conjugacy classes of non-(1-or-G) subgroups
           H,      # a subgroup (possibly normal)
           N,      # a normal subgroup
           T,      # an isom. type
           TH, tH, # isom. types for H, a type
           TN, tN, # isom. types for N, a type
           DTypes; # the decomposition types

    if not IsFinite(G) then TryNextMethod(); fi;

    DTypes := [ ];

    # abelian special case
    if IsAbelian(G) then
      AG := AbelianInvariants(G);
      if Length(AG) = 1 then DTypes := Set([AG[1]]); else
        T := ["x"];
        for a in AG do Add(T,a); od;
        DTypes := Set([T]);
      fi;
      return DTypes;
    fi;

    # brute force enumeration
    CS  := ConjugacyClassesSubgroups( G );
    CS  := CS{[2..Length(CS)-1]};
    for N in Filtered(List(Reversed(CS),Representative),
                      N -> IsNormal(G,N)) do
      for H in List(CS, Representative) do # Lemma1 (`SemidirectFactors...')
        if    Size(H)*Size(N) = Size(G)
          and IsTrivial(NormalIntersection(N,H)) 
        then
          # recursion (exponentially) on (semi-)factors
          TH := DecompositionTypesOfGroup(H);
          TN := DecompositionTypesOfGroup(N);
          if IsNormal(G,H)
          then
            # non-trivial G = H x N
            for tH in TH do
              for tN in TN do
                T := [ ];
                if   IsList(tH) and tH[1] = "x"
                then Append(T,tH{[2..Length(tH)]});
                else Add(T,tH); fi;
                if   IsList(tN) and tN[1] = "x"
                then Append(T,tN{[2..Length(tN)]});
                else Add(T,tN); fi; 
                Sort(T);
                AddSet(DTypes,Concatenation(["x"],T));
              od;
            od;
          else
            # non-direct, non-trivial G = H semidirect N 
            for tH in TH do
              for tN in TN do
                AddSet(DTypes,[":",tH,tN]);
              od;
            od;
          fi;
        fi;
      od;
    od;

    # default: a non-split extension
    if Length(DTypes) = 0 then DTypes := Set([["non-split",Size(G)]]); fi;

    return DTypes;
  end );

#############################################################################
##
#M  IsDihedralGroup( <G> ) . . . . . . . . . . . . . . . . . . generic method
##
InstallMethod( IsDihedralGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  Zn, G1, T, n, t, s, i;

    if not IsFinite(G) then TryNextMethod(); fi;

    if Size(G) mod 2 <> 0 then return false; fi;
    n := Size(G)/2;

    # find a normal subgroup of G of type Zn
    if n mod 2 <> 0 then
      # G = < s, t | s^n = t^2 = 1, s^t = s^-1 >
      # ==> Comm(s, t) = s^-1 t s t = s^-2 ==> G' = < s^2 > = < s >
      Zn := DerivedSubgroup(G);
      if not ( IsCyclic(Zn) and Size(Zn) = n ) then return false; fi;
    else # n mod 2 = 0
      # G = < s, t | s^n = t^2 = 1, s^t = s^-1 >
      # ==> Comm(s, t) = s^-1 t s t = s^-2 ==> G' = < s^2 >
      G1 := DerivedSubgroup(G);
      if not ( IsCyclic(G1) and Size(G1) = n/2 ) then return false; fi;
      # G/G1 = {1*G1, t*G1, s*G1, t*s*G1}
      T := RightTransversal(G,G1);
      i := 1;
      repeat
        Zn := ClosureGroup(G1,T[i]);
        i  := i + 1;
      until i > 4 or ( IsCyclic(Zn) and Size(Zn) = n );
      if not ( IsCyclic(Zn) and Size(Zn) = n ) then return false; fi;
    fi; # now Zn is normal in G and Zn = < s | s^n = 1 >

    # choose t in G\Zn and check dihedral structure
    repeat t := Random(G); until not t in Zn;
    if not (Order(t) = 2 and ForAll(GeneratorsOfGroup(Zn),s->t*s*t*s=s^0))
    then return false; fi;

    # choose generator s of Zn
    repeat s := Random(Zn); until Order(s) = n;
    SetDihedralGenerators(G,[t,s]);
    return true;
  end );

#############################################################################
##
#M  IsQuaternionGroup( <G> ) . . . . . . . . . . . . . . . . . generic method
##
InstallMethod( IsQuaternionGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  N,    # size of G
           k,    # ld(N)
           n,    # N/2
           G1,   # derived subgroup of G
           Zn,   # cyclic normal subgroup of index 2 in G
           T,    # transversal of G/G1
           t, s, # canonical generators of the quaternion group
           i;    # counter

    if not IsFinite(G) then TryNextMethod(); fi;

    N := Size(G);
    k := LogInt(N,2);
    if not( 2^k = N and k >= 3 ) then return false; fi;
    n := N/2;

    # G = <t, s | s^(2^k) = 1, t^2 = s^(2^k-1), s^t = s^-1>
    # ==> Comm(s, t) = s^-1 t s t = s^-2 ==> G' = < s^2 >
    G1 := DerivedSubgroup(G);
    if not ( IsCyclic(G1) and Size(G1) = n/2 ) then return false; fi;

    # find a normal subgroup of G of type Zn
    # G/G1 = {1*G1, t*G1, s*G1, t*s*G1}
    T := RightTransversal(G, G1);
    i := 1;
    repeat
      Zn := ClosureGroup(G1,T[i]);
      i  := i + 1;
    until i > 4 or ( IsCyclic(Zn) and Size(Zn) = n );
    if not ( IsCyclic(Zn) and Size(Zn) = n ) then return false; fi;

    # now Zn is normal in G and Zn = < s | s^n = 1 >
    # choose t in G\Zn and check quaternion structure
    repeat t := Random(G); until not t in Zn;
    if not (Order(t) = 4 and ForAll(GeneratorsOfGroup(Zn), s->s^t*s = s^0))
    then return false; fi;

    # choose generator s of Zn
    repeat s := Random(Zn); until Order(s) = n;
    SetQuaternionGenerators(G,[t,s]);
    return true;
  end );

#############################################################################
##
#M  IsQuasiDihedralGroup( <G> ) . . . . . . . . . . . . . . .  generic method
##
InstallMethod( IsQuasiDihedralGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  N,    # size of G
           k,    # ld(N)
           n,    # N/2
           G1,   # derived subgroup of G
           Zn,   # cyclic normal subgroup of index 2 in G
           T,    # transversal of G/G1
           t, s, # canonical generators of the quasidihedral group
           i;    # counter

    if not IsFinite(G) then TryNextMethod(); fi;

    N := Size(G);
    k := LogInt(N, 2);
    if not( 2^k = N and k >= 4 ) then return false; fi;
    n := N/2;

    # G = <t, s | s^(2^n) = t^2 = 1, s^t = s^(-1 + 2^(n-1))>.
    # ==> Comm(s, t) = s^-1 t s t = s^(-2+2^(n-1)) 
    # ==> G' = < s^(-2+2^(n-1)) >, |G'| = n/2.
    G1 := DerivedSubgroup(G);
    if not ( IsCyclic(G1) and Size(G1) = n/2 ) then return false; fi;

    # find a normal subgroup of G of type Zn
    # G/G1 = {1*G1, t*G1, s*G1, t*s*G1}
    T := RightTransversal(G, G1);
    i := 1;
    repeat
      Zn := ClosureGroup(G1,T[i]);
      i  := i + 1;
    until i > 4 or ( IsCyclic(Zn) and Size(Zn) = n );
    if not ( IsCyclic(Zn) and Size(Zn) = n ) then return false; fi;

    # now Zn is normal in G and Zn = < s | s^n = 1 >
    # now remain only the possibilities for the structure: 
    #   dihedral, quaternion, quasidihedral
    repeat t := Random(G); until not t in Zn;

    # detect cases: dihedral, quaternion
    if   ForAll(GeneratorsOfGroup(Zn), s -> s^t*s = s^0)
    then return false; fi;
 
    # choose t in Zn of order 2   
    repeat
      t := Random(G);
    until not( t in Zn and Order(t) = 2 ); # prob = 1/4

    # choose generator s of Zn
    repeat s := Random(Zn); until Order(s) = n;

    SetQuasiDihedralGenerators(G,[t,s]);
    return true;
  end );

#############################################################################
##
#M  IsAlternatingGroup( <G> ) . . . . . . . . . . . . . . . .  generic method
##
##  This method additionally sets the attribute `AlternatingDegree' in case
##  <G> is isomorphic to a natural alternating group.
##
InstallMethod( IsAlternatingGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  n, ids, info;

    if not IsFinite(G) then TryNextMethod(); fi;

    if Size(G) < 60 then
      ids := [ [ 1, 1 ], [ 1, 1 ], [ 3, 1 ], [ 12, 3 ] ];
      n := Position(ids,IdGroup(G));
      if   IsInt(n)
      then SetAlternatingDegree(G,n); return true;
      else return false; fi;
    fi;

    if not IsSimpleGroup(G) then return false; fi;

    info := IsomorphismTypeInfoFiniteSimpleGroup(G);
    if   info.series = "A"
    then SetAlternatingDegree(G,info.parameter); return true;
    else return false; fi;
  end );

#############################################################################
##
#M  AlternatingDegree( <G> ) generic method, dispatch to `IsAlternatingGroup'
##
InstallMethod( AlternatingDegree,
               "generic method, dispatch to `IsAlternatingGroup'",
               true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if IsNaturalAlternatingGroup(G) then return DegreeAction(G); fi;
    if IsAlternatingGroup(G) then return AlternatingDegree(G);
                             else return fail; fi;
  end );

#############################################################################
##
#M  IsNaturalAlternatingGroup( <G> ) . . . . . . .  for non-permutation group
##
InstallOtherMethod( IsNaturalAlternatingGroup, "for non-permutation group",
                    true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsPermGroup(G) then return false; else TryNextMethod(); fi;
  end );

#############################################################################
##
#M  IsSymmetricGroup( <G> ) . . . . . . . . . . . . . . . . .  generic method
##
##  This method additionally sets the attribute `SymmetricDegree' in case 
##  <G> is isomorphic to a natural symmetric group.
##
InstallMethod( IsSymmetricGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  G1;

    if not IsFinite(G) then TryNextMethod(); fi;
    if IsTrivial(G) then SetSymmetricDegree(G,1); return true; fi;
    G1 := DerivedSubgroup(G);
    if   not (IsAlternatingGroup(G1) and Index(G,G1) = 2)
      or not IsTrivial(Centralizer(G,G1))
      or Size(G) = 720 and IdGroup(G) <> [ 720, 763 ]
    then return false; fi;
    SetSymmetricDegree(G,AlternatingDegree(G1));
    return true;
  end );

#############################################################################
##
#M  IsNaturalSymmetricGroup( <G> ) . . . . . . . .  for non-permutation group
##
InstallOtherMethod( IsNaturalSymmetricGroup, "for non-permutation group",
                    true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsPermGroup(G) then return false; else TryNextMethod(); fi;
  end );

#############################################################################
##
#M  SymmetricDegree( <G> ) . . generic method, dispatch to `IsSymmetricGroup'
##
InstallMethod( SymmetricDegree,
               "generic method, dispatch to `IsSymmetricGroup'",
               true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if IsNaturalSymmetricGroup(G) then return DegreeAction(G); fi;
    if IsSymmetricGroup(G) then return SymmetricDegree(G);
                           else return fail; fi;
  end );

#############################################################################
##
#F  SizeGL(  <n>, <q> )
##
InstallGlobalFunction( SizeGL,

  function ( n, q )

    local N, qn, k;

    N  := 1;
    qn := q^n;
    for k in [0..n-1] do
      N := N * (qn - q^k);
    od;
    return N;
  end );

#############################################################################
##
#F  SizeSL(  <n>, <q> )
##
InstallGlobalFunction( SizeSL,

  function ( n, q )

    local N, qn, k;

    N  := 1;
    qn := q^n;
    for k in [0..n-1] do
      N := N * (qn - q^k);
    od;
    return N/(q - 1);
  end );

#############################################################################
##
#F  SizePSL(  <n>, <q> )
##
InstallGlobalFunction( SizePSL,

  function ( n, q )

    local N, qn, k;

    N  := 1;
    qn := q^n;
    for k in [0..n-1] do
      N := N * (qn - q^k);
    od;
    return N/((q - 1)*(Gcd(n, q - 1)));
  end );

#############################################################################
##
#F  LinearGroupParameters(  <N>  )
##
InstallGlobalFunction( LinearGroupParameters,

  function ( N )

    local  npeGL,      # list of possible [n, p, e] for a GL
           npeSL,      # list of possible [n, p, e] for a SL
           npePSL,     # list of possible [n, p, e] for a PSL
           n, p, e,    # N = Size(GL(n, p^e))
           pe, p2, ep, # p^ep is maximal prime power divisor of N
           e2,         # a divisor of ep
           x, r, G;    # temporaries

    if not IsPosInt(N) then Error("<N> must be positive integer"); fi;

    # Formeln:
    # |GL(n, q)|  = Product(q^n - q^k : k in [0..n-1])
    # |SL(n, q)|  = |GL(n, q)| / (q - 1)
    # |PSL(n, q)| = |SL(n, q)| / gcd(n, q - 1)
    #   mit q = p^e f"ur p prim, e >= 1, n >= 1.

    # Betrachte N = |GL(n,q)|. Dann gilt f"ur n >= 2
    #   (1) nu_p(N) = e * Binomial(n,2) und
    #   (2) (q - 1)^n teilt N.  
    npeGL := [ ]; npeSL := [ ]; npePSL := [ ];
    if N = 1 then
      return rec( npeGL := npeGL, npeSL := npeSL, npePSL := npePSL );
    fi;
    for pe in Collected(Factors(N)) do
      p  := pe[1];
      ep := pe[2];

      # find e, n such that (1) e*Binomial(n,2) = ep
      for e in DivisorsInt(ep) do

        # find n such that Binomial(n, 2) = ep/e
        # <==> 8 ep/e + 1 = (2 n - 1)^2
        x := 8*ep/e + 1;
        r := RootInt(x, 2);
        if r^2 = x then
          n := (r + 1)/2;

          # decide it
          G := SizeGL(n, p^e);
          if N = G then Add(npeGL,[n, p, e]); fi;
          if N = G/(p^e - 1) then Add(npeSL, [n, p, e]); fi;
          if N = G/((p^e - 1)*GcdInt(p^e - 1, n)) then
            Add(npePSL, [n, p, e]);
          fi;
        fi;
      od;
    od;
    return rec( npeGL := npeGL, npeSL := npeSL, npePSL := npePSL );
  end );

#############################################################################
##
#M  IsPSL( <G> )
##
InstallMethod( IsPSL,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )

    local  npes, npe;  # list of possible PSL-parameters

    if not IsFinite(G) then TryNextMethod(); fi;

    # check if G has appropiate size
    npes := LinearGroupParameters(Size(G)).npePSL;
    if Length(npes) = 0 then return false; fi;

    # more than one npe-triple should only
    # occur in the cases |G| in [60, 168, 20160] 
    if   Length(npes) > 1 and not( Size(G) in [60, 168, 20160] ) 
    then Error("algebraic panic! propably npe does not work"); fi;

    # set the parameters
    npe := npes[1];

    # catch the cases:
    #   PSL(2, 2) ~= S3, PSL(2, 3) ~= A4,
    # in which the PSL is not simple

    # PSL(2, 2)
    if npes[1] = [2, 2, 1] then
      if IsAbelian(G) then return false; fi;
      SetnpePSL(G,npe); return true;
  
    # PSL(2, 3)
    elif npes[1] = [2, 3, 1] then
      if Size(DerivedSubgroup(G)) <> 4 then return false; fi;
      SetnpePSL(G,npe); return true;

   # PSL(3, 4) / PSL(4, 2)
    elif npes = [ [ 4, 2, 1 ], [ 3, 2, 2 ] ] then
      if   IdGroup(SylowSubgroup(G,2)) = [64,138] then npe := npes[1];
      elif IdGroup(SylowSubgroup(G,2)) = [64,242] then npe := npes[2]; fi;
      SetnpePSL(G,npe); return true;

    # other cases
    else
      if not IsSimpleGroup(G) then return false; fi;
      SetnpePSL(G,npe); return true;
    fi;
  end );

#############################################################################
##
#M  PSLDegree( <G> ) . . . . . . . . . . . . generic method for finite groups
##
InstallMethod( PSLDegree,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsPSL(G) then return fail; fi;
    return npePSL(G)[1];
  end );

#############################################################################
##
#M  PSLUnderlyingField( <G> ) . . . . . . .  generic method for finite groups
##
InstallMethod( PSLUnderlyingField,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsPSL(G) then return fail; fi;
    return GF(npePSL(G)[2]^npePSL(G)[3]);
  end );

#############################################################################
##
#M  IsSL( <G> ) . . . . . . . . . . . . . .  generic method for finite groups
##
InstallMethod( IsSL,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )

    local  npes,  # list of possible SL-parameters
           C;     # centre of G

    if not IsFinite(G) then TryNextMethod(); fi;

    # check if G has appropiate size
    npes := LinearGroupParameters(Size(G)).npeSL;
    if Length(npes) = 0 then return false; fi;

    # more than one npe-triple should never occur
    if Length(npes) > 1 then
      Error("algebraic panic! this should not occur");
    fi;
    npes := npes[1]; 

    # catch the cases:
    #   SL(2, 2) ~= S3, SL(2, 3)
    # in which the corresponding FactorGroup PSL is not simple

    # SL(2, 2)
    if npes = [2, 2, 1] then
      if IsAbelian(G) then return false; fi;
      SetnpeSL(G,npes); return true;

    # SL(2, 3)
    elif npes = [2, 3, 1] then
      if Size(DerivedSubgroup(G)) <> 8 then return false; fi;
      SetnpeSL(G,npes); return true;

    # other cases, in which the contained PSL is simple
    else

      # calculate the centre C of G, which should have the 
      # size gcd(n, p^e - 1), and if so, check if G/C (which
      # should be the corresponding PSL) is simple
      C := Centre(G);
      if   Size(C) <> Gcd(npes[1],npes[2]^npes[3] - 1)
        or not IsSimpleGroup(G/C)
        or Size(G)/2 in List(NormalSubgroups(G),Size)
      then return false; fi;
     if   IsomorphismGroups(G,SL(npes[1],npes[2]^npes[3])) = fail
     then return false; fi;
     SetnpeSL(G,npes); return true;
    fi;
  end );

#############################################################################
##
#M  SLDegree( <G> ) . . . . . . . . . . . .  generic method for finite groups
##
InstallMethod( SLDegree,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsSL(G) then return fail; fi;
    if   HasIsNaturalSL(G) and IsNaturalSL(G)
    then return DimensionOfMatrixGroup(G); fi;
    return npeSL(G)[1];
  end );

#############################################################################
##
#M  SLUnderlyingField( <G> ) . . . . . . . . generic method for finite groups
##
InstallMethod( SLUnderlyingField,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsSL(G) then return fail; fi;
    if   HasIsNaturalSL(G) and IsNaturalSL(G)
    then return FieldOfMatrixGroup(G); fi;
    return GF(npeSL(G)[2]^npeSL(G)[3]);
  end );

#############################################################################
##
#M  IsGL( <G> )
##
InstallMethod( IsGL,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )

    local  npes,  # list of possible GL-parameters
           G1,    # derived subgroup of G
           C1;    # centre of G1

    if not IsFinite(G) then TryNextMethod(); fi;

    # check if G has appropiate size
    npes := LinearGroupParameters(Size(G)).npeGL;
    if Length(npes) = 0 then return false; fi;
  
    # more than one npe-triple should never occur
    if Length(npes) > 1 then
      Error("algebraic panic! this should not occur");
    fi;
    npes := npes[1];

    # catch the cases:
    #   GL(2, 2) ~= S3, GL(2, 3)
    # in which the contained group PSL is not simple

    # GL(2, 2)
    if npes = [2, 2, 1] then
      if IsAbelian(G) then return false; fi;
      SetnpeGL(G,npes); return true;

    # GL(2, 3)
    elif npes = [2, 3, 1] then
      if IdGroup(G) <> [48,29] then return false; fi;
      SetnpeGL(G,npes); return true;

    # other cases, in which contained PSL is simple
    else

      # calculate the derived subgroup which should be the
      # corresponding SL of index p^e - 1
      G1 := DerivedSubgroup(G);
      if Index(G, G1) <> npes[2]^npes[3] - 1 then return false; fi;

      # calculate the centre C1 of G1, which should have the 
      # size gcd(n, p^e - 1), and if so, check if G1/C1 
      # (which should be the corresponding PSL) is simple
      C1 := Centre(G1);
      if   Size(C1) <> Gcd(npes[1],npes[2]^npes[3] - 1)
        or not IsSimpleGroup(G1/C1)
      then return false; fi;
      if   IsomorphismGroups(G,GL(npes[1],npes[2]^npes[3])) = fail
      then return false; fi;
      SetnpeGL(G,npes); return true;
    fi;
  end );

#############################################################################
##
#M  GLDegree( <G> ) . . . . . . . . . . . .  generic method for finite groups
##
InstallMethod( GLDegree,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsGL(G) then return fail; fi;
    if   HasIsNaturalGL(G) and IsNaturalGL(G)
    then return DimensionOfMatrixGroup(G); fi;
    return npeGL(G)[1];
  end );

#############################################################################
##
#M  GLUnderlyingField( <G> ) . . . . . . . . generic method for finite groups
##
InstallMethod( GLUnderlyingField,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsGL(G) then return fail; fi;
    if   HasIsNaturalGL(G) and IsNaturalGL(G)
    then return FieldOfMatrixGroup(G); fi;
    return GF(npeGL(G)[2]^npeGL(G)[3]);
  end );

#############################################################################
##
#M  StructureDescription( <G> ) . . . . . . . . . . . . . .  for finite group
##
InstallMethod( StructureDescription,
               "for finite groups", true, [ IsGroup ], 0,

  function ( G )

    local  G1,           # the group G reconstructed; result
           Hs,           # split factors of G
           Gs,           # factors of G
           cyclics,      # cyclic factors of G
           cycsizes,     # sizes of cyclic factors of G
           noncyclics,   # noncyclic factors of G
           cycname,      # part of name corresponding to cyclics
           noncycname,   # part of name corresponding to noncyclics
           insertsep,    # function to join parts of name
           cycsaspowers, # function to write C2 x C2 x C2 as 2^3, etc.
           name,         # buffer for computed name
           cname,        # name for centre of G
           dname,        # name for derived subgroup of G
           series,       # series of simple groups
           parameter,    # parameters of G in series
           HNs,          # minimal [H, N] decompositions
           HNs1,         # HN's with prefered H or N
           HNs1Names,    # names of products in HNs1
           HN, H, N,     # semidirect factors of G
           HNname,       # name of HN
           len,          # maximal number of direct factors
           g,            # an element of G
           id,           # id of G in the library of perfect groups
           short,        # short / long output format
           i;            # counter

    insertsep := function ( strs, sep, brack )

      local  s, i;

      if strs = [] then return ""; fi;
      strs := Filtered(strs,str->str<>"");
      if Length(strs) > 1 then
        for i in [1..Length(strs)] do
          if   Intersection(strs[i],brack) <> ""
          then strs[i] := Concatenation("(",strs[i],")"); fi;
        od;
      fi;
      s := strs[1];
      for i in [2..Length(strs)] do
        s := Concatenation(s,sep,strs[i]);
      od;
      if short then RemoveCharacters(s," "); fi;
      return s;
    end;

    cycsaspowers := function ( name )

      local  p, k, q;

      if not short then return name; fi;
      RemoveCharacters(name," ");
      for q in Filtered(Reversed(DivisorsInt(Size(G))),
                        IsPrimePowerInt)
      do
        p := SmallestRootInt(q); k := LogInt(q,p);
        if k > 1 then
          name := ReplacedString(name,insertsep(List([1..k],
                    i->Concatenation("C",String(p))),"x",""),
                    Concatenation(String(p),"^",String(k)));
        fi;
      od;
      RemoveCharacters(name,"C");
      return name;
    end;

    if not IsFinite(G) then TryNextMethod(); fi;

    short := ValueOption("short") = true;

    # fetch name from precomputed list, if available
    if ValueOption("recompute") <> true and Size(G) <= 2000 then
      if IsBound(NAMES_OF_SMALL_GROUPS[Size(G)]) then
        i := IdGroup(G)[2];
        if IsBound(NAMES_OF_SMALL_GROUPS[Size(G)][i]) then
          name := ShallowCopy(NAMES_OF_SMALL_GROUPS[Size(G)][i]);
          return cycsaspowers(name);
        fi;
      fi;
    fi;

    # special case trivial group
    if IsTrivial(G) then return "1"; fi;

    # special case abelian group
    if IsAbelian(G) then
      cycsizes := AbelianInvariants(G);
      cycsizes := Reversed(ElementaryDivisorsMat(DiagonalMat(cycsizes)));
      cycsizes := Filtered(cycsizes,n->n<>1);
      return cycsaspowers(insertsep(List(cycsizes,
                                         n->Concatenation("C",String(n))),
                                    " x ",""));
    fi;

    # special case alternating group
    if   IsAlternatingGroup(G)
    then return Concatenation("A",String(AlternatingDegree(G))); fi;

    # special case symmetric group
    if   IsSymmetricGroup(G)
    then return Concatenation("S",String(SymmetricDegree(G))); fi;

    # special case dihedral group
    if   IsDihedralGroup(G) and Size(G) > 6
    then return Concatenation("D",String(Size(G))); fi;

    # special case quaternion group
    if   IsQuaternionGroup(G)
    then return Concatenation("Q",String(Size(G))); fi;

    # special case quasidihedral group
    if   IsQuasiDihedralGroup(G)
    then return Concatenation("QD",String(Size(G))); fi;

    # special case PSL
    if IsPSL(G) then
      return Concatenation("PSL(",String(PSLDegree(G)),",",
                                  String(Size(PSLUnderlyingField(G))),")");
    fi;

    # special case SL
    if IsSL(G) then
      return Concatenation("SL(",String(SLDegree(G)),",",
                                 String(Size(SLUnderlyingField(G))),")");
    fi;

    # special case GL
    if IsGL(G) then
      return Concatenation("GL(",String(GLDegree(G)),",",
                                 String(Size(GLUnderlyingField(G))),")");
    fi;

    # other simple group
    if IsSimpleGroup(G) then
      name := SplitString(IsomorphismTypeInfoFiniteSimpleGroup(G).name," ");
      name := name[1];
      if Position(name,',') = fail then RemoveCharacters(name,"()"); else
        series    := IsomorphismTypeInfoFiniteSimpleGroup(G).series;
        parameter := IsomorphismTypeInfoFiniteSimpleGroup(G).parameter;
        if   series = "2A" then
          name := Concatenation("PSU(",String(parameter[1]+1),",",
                                       String(parameter[2]),")");
        elif series = "B" then
          name := Concatenation("O(",String(2*parameter[1]+1),",",
                                     String(parameter[2]),")");
        elif series = "2B" then
          name := Concatenation("Sz(",String(parameter),")");
        elif series = "C" then
          name := Concatenation("PSp(",String(2*parameter[1]),",",
                                       String(parameter[2]),")");
        elif series = "D" then
          name := Concatenation("O+(",String(2*parameter[1]),",",
                                      String(parameter[2]),")");
        elif series = "2D" then
          name := Concatenation("O-(",String(2*parameter[1]),",",
                                      String(parameter[2]),")");
        elif series = "3D" then
          name := Concatenation("3D(4,",String(parameter),")");
        elif series in ["2F","2G"] and parameter > 2 then
          name := Concatenation("Ree(",parameter,")");
        fi;
      fi;
      return name;
    fi;

    # direct product decomposition
    Gs := DirectFactorsOfGroup( G );
    if Length(Gs) > 1 then

      # decompose the factors
      Hs := List(Gs,StructureDescription);

      # construct
      cyclics  := Filtered(Gs,IsCyclic);
      if cyclics <> [] then
        cycsizes := ElementaryDivisorsMat(DiagonalMat(List(cyclics,Size)));
        cycsizes := Filtered(cycsizes,n->n<>1);
        cycname  := cycsaspowers(insertsep(List(cycsizes,
                                 n->Concatenation("C",String(n))),
                                 " x ",":."));
      else cycname := ""; fi;
      noncyclics := Difference(Gs,cyclics);
      noncycname := insertsep(List(noncyclics,StructureDescription),
                              " x ",":.");

      return insertsep([cycname,noncycname]," x ",":.");
    fi;

    # semidirect product decomposition
    HNs := SemidirectFactorsOfGroup( G );
    if Length(HNs) > 0 then

      # prefer abelian H; abelian N; many direct factors in N; phi injective
      HNs1 := Filtered(HNs, HN -> IsAbelian(HN[1])); 
      if Length(HNs1) > 0 then HNs := HNs1; fi;
      HNs1 := Filtered(HNs, HN -> IsAbelian(HN[2]));
      if Length(HNs1) > 0 then
        HNs := HNs1;
        len := Maximum( List(HNs, HN -> Length(AbelianInvariants(HN[2]))) );
        HNs := Filtered(HNs, HN -> Length(AbelianInvariants(HN[2])) = len);
      fi;
      HNs1 := Filtered(HNs, HN -> Length(DirectFactorsOfGroup(HN[2])) > 1);
      if Length(HNs1) > 0 then
        HNs := HNs1;
        len := Maximum(List(HNs,HN -> Length(DirectFactorsOfGroup(HN[2]))));
        HNs := Filtered(HNs,HN -> Length(DirectFactorsOfGroup(HN[2]))=len);
      fi;
      HNs1 := Filtered(HNs, HN -> IsTrivial(Centralizer(HN[1],HN[2])));
      if Length(HNs1) > 0 then HNs := HNs1; fi;
      if Length(HNs) > 1 then

        # decompose the pairs [H, N] and remove isomorphic copies
        HNs1      := [];
        HNs1Names := [];
        for HN in HNs do
          HNname := Concatenation(StructureDescription(HN[1]),
                                  StructureDescription(HN[2]));
          if not HNname in HNs1Names then
            Add(HNs1,      HN);
            Add(HNs1Names, HNname);
          fi;
        od;
        HNs := HNs1;

        if Length(HNs) > 1 then
          Info(InfoWarning,2,"Warning! Non-unique semidirect product:");
          Info(InfoWarning,2,List(HNs,HN -> List(HN,StructureDescription)));
        fi;
      fi;

      H := HNs[1][1]; N := HNs[1][2];

      return insertsep([StructureDescription(N),
                        StructureDescription(H)]," : ","x:.");
    fi;

    # non-splitting, non-simple group
    if not IsTrivial(Centre(G)) then
      cname := insertsep([StructureDescription(Centre(G)),
                          StructureDescription(G/Centre(G))]," . ","x:.");
    fi;
    if not IsPerfectGroup(G) then
      dname := insertsep([StructureDescription(DerivedSubgroup(G)),
                          StructureDescription(G/DerivedSubgroup(G))],
                         " . ","x:.");
    fi;
    if   IsBound(cname) and IsBound(dname) and cname <> dname
    then return Concatenation(cname," = ",dname);
    elif IsBound(cname) then return cname;
    elif IsBound(dname) then return dname;
    elif not IsTrivial(FrattiniSubgroup(G))
    then return insertsep([StructureDescription(FrattiniSubgroup(G)),
                           StructureDescription(G/FrattiniSubgroup(G))],
                          " . ","x:.");       
    elif IsPosInt(NrPerfectGroups(Size(G))) then
         id := PerfectIdentification(G);
         return Concatenation("PerfectGroup(",String(id[1]),",",
                                              String(id[2]),")");
    else return Concatenation("<a non-simple perfect group of order ",
                Size(G)," with trivial centre and trivial Frattini ",
                "subgroup, which cannot be written as a direct or ",
                "semidirect product of smaller groups>");
    fi;
  end );

#############################################################################
##
#M  ViewObj( <G> ) . . . . . . . . for group with known structure description
##
InstallMethod( ViewObj,
               "for groups with known structure description",
               true, [ IsGroup and HasStructureDescription ], SUM_FLAGS,

  function ( G )
    if HasName(G) then TryNextMethod(); fi;
    Print(StructureDescription(G));
  end );

#############################################################################
##
#E  grpnames.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here