1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
#############################################################################
##
#W grppc.gd GAP Library Frank Celler
##
#H @(#)$Id: grppc.gd,v 4.57.2.1 2005/10/14 08:45:40 gap Exp $
##
#Y Copyright (C) 1996, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the operations for groups with a polycyclic collector.
##
## IsPcgs
## a polycyclic generating system, also behaves like a pc sequence
##
## IsPcGroup
## a poylcyclic group whose elements family is defined by a collector
##
## CanEasilyComputePcgs
## a group that knows how to compute a pcgs relatively fast
##
## HasDefiningPcgs
## a group whose elements family is generated by a pcgs
##
## HasHomePcgs
## a group that knows a pcgs of a super group
##
Revision.grppc_gd :=
"@(#)$Id: grppc.gd,v 4.57.2.1 2005/10/14 08:45:40 gap Exp $";
#############################################################################
##
#V InfoPcGroup
##
DeclareInfoClass("InfoPcGroup");
#############################################################################
##
#M CanEasilysortElements
##
InstallTrueMethod( CanEasilySortElements, IsPcGroup and IsFinite );
#############################################################################
##
#M KnowsHowToDecompose( <G> ) . . . . . . . . . . always true for pc groups
##
InstallTrueMethod( KnowsHowToDecompose, IsPcGroup );
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <G> ) always true for coll. of pc elts.
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses,
IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection );
#############################################################################
##
#A CanonicalPcgsWrtFamilyPcgs( <grp> ) . . . . . . . with respect to family
##
DeclareAttribute( "CanonicalPcgsWrtFamilyPcgs", IsGroup );
#############################################################################
##
#A CanonicalPcgsWrtHomePcgs( <grp> ) . . . . . . . . . with respect to home
##
DeclareAttribute( "CanonicalPcgsWrtHomePcgs", IsGroup );
#############################################################################
##
#A FamilyPcgs( <grp> ) . . . . . . . . . . . . . . . . . pcgs of the family
##
DeclareAttribute( "FamilyPcgs", IsGroup );
InstallSubsetMaintenance( FamilyPcgs, IsGroup, IsGroup );
#############################################################################
##
#A HomePcgs( <grp> ) . . . . . . . . . . . . . . . . . . . pcgs of the home
##
DeclareAttribute( "HomePcgs", IsGroup );
InstallSubsetMaintenance( HomePcgs, IsGroup, IsGroup );
#############################################################################
##
#A InducedPcgsWrtFamilyPcgs( <grp> ) . . . . . . . . with respect to family
##
DeclareAttribute( "InducedPcgsWrtFamilyPcgs", IsGroup );
#############################################################################
##
#O InducedPcgs( <pcgs>, <grp> )
##
## computes a pcgs for <grp> which is induced by <pcgs>. If <pcgs> has
## a parent pcgs, then the result is induced with respect to this parent
## pcgs.
##
## `InducedPcgs' is a wrapper function only. Therefore, methods for computing
## computing an induced pcgs should be installed for the
## operation `InducedPcgsOp'.
##
DeclareOperation( "InducedPcgs", [IsPcgs,IsGroup] );
#############################################################################
##
#O InducedPcgsOp( <pcgs>, <grp> )
##
## computes a pcgs for <grp> which is induced by <pcgs>. <pcgs> must not
## be an induced pcgs. This operation should not be called directly.
## Instead, please use `InducedPcgs' which caches its results.
##
DeclareOperation( "InducedPcgsOp", [IsPcgs,IsGroup] );
#############################################################################
##
#A ComputedInducedPcgses( <grp> )
##
## This attribute stores previously computed induced generating systems
## of the group <grp>. It is a list of the form
## [<ppcgs_1>, <ipcgs_1>, <ppcgs_2>, <ipcgs_2>, ...],
## where <ppcgs_n> is a parent pcgs and <igs_n> is the corresponding
## induced generating system.
##
DeclareAttribute ("ComputedInducedPcgses", IsGroup, "mutable");
#############################################################################
##
#F SetInducedPcgs( <home>,<grp>,<pcgs> )
##
## This function sets <pcgs> to be an <home>-induced pcgs for <grp> if the
## `HomePcgs' of <grp> equals <home> and the `ParentPcgs' of <pcgs> equals
## <home>. (This means <pcgs> is induced by <home>.) If <grp> has no
## `HomePcgs' yet, it is assigned to <home> before this.
## This function should be used in algorithms if a pcgs for a new subgroup
## is computed that by this calculation is known to be compatible with the
## home pcgs of the calculation.
DeclareGlobalFunction( "SetInducedPcgs" );
#############################################################################
##
#A InducedPcgsWrtHomePcgs( <grp> ) . . . . . . . . . . with respect to home
##
## returns an induced pcgs for <grp> with respect to the home pcgs.
DeclareAttribute(
"InducedPcgsWrtHomePcgs",
IsGroup );
#############################################################################
##
#A Pcgs( <G> ) . . . . . . . . . . . . . . . . . . . . . . pcgs of a group
##
## returns a pcgs for the group <G>.
## If <grp> is not polycyclic it returns `fail' *and this result is not
## stored as attribute value*, in particular in this case the filter
## `HasPcgs' is *not* set for <G>!
DeclareAttribute( "Pcgs", IsGroup );
#############################################################################
##
#A GeneralizedPcgs( <G> ) . . . . . . . . . . . . . . . . . pcgs of a group
##
## returns a generalized pcgs for the group <G>.
DeclareAttribute( "GeneralizedPcgs", IsGroup );
#############################################################################
##
#F CanEasilyComputePcgs( <grp> ) . . . . . group is willing to compute pcgs
##
## This filter indicates whether it is possible to compute a pcgs for <grp>
## cheaply. Clearly, <grp> must be polycyclic in this case. However, not
## for every polycyclic group there is a method to compute a pcgs at low
## costs. This filter is used in the method selection mainly.
## Note that this filter may change its value from false to true.
##
DeclareFilter( "CanEasilyComputePcgs" );
# to satisfy method installation requirements
InstallTrueMethod(IsGroup,CanEasilyComputePcgs);
#############################################################################
##
#O SubgroupByPcgs( <G>, <pcgs> )
##
DeclareOperation( "SubgroupByPcgs", [IsGroup, IsPcgs] );
#############################################################################
##
#O AffineOperation( <gens>, <basisvectors>, <linear>, <transl> )
#O AffineAction( <gens>, <basisvectors>, <linear>, <transl> )
##
## return a list of matrices, one for each element of <gens>, which
## corresponds to the affine action of the elements in <gens> on the
## basis <basisvectors> via <linear> with translation <transl>.
DeclareOperation( "AffineAction",
[ IsList, IsMatrix, IsFunction, IsFunction ] );
DeclareSynonym( "AffineOperation", AffineAction );
#############################################################################
##
#O LinearOperation( <gens>, <basisvectors>, <linear> )
#O LinearAction( <gens>, <basisvectors>, <linear> )
##
## returns a list of matrices, one for each element of <gens>, which
## corresponds to the matrix action of the elements in <gens> on the
## basis <basisvectors> via <linear>.
DeclareOperation( "LinearAction", [ IsList, IsMatrix, IsFunction ] );
DeclareSynonym( "LinearOperation",LinearAction);
#############################################################################
##
#M IsSolvableGroup
##
InstallTrueMethod(
IsSolvableGroup,
IsPcGroup );
#############################################################################
##
#F AffineOperationLayer( <G>, <gens>, <pcgs>, <transl> )
#F AffineActionLayer( <G>, <gens>, <pcgs>, <transl> )
##
## returns a list of matrices, one for each element of <gens>, which
## corresponds to the affine action of <G> on the vector space corresponding
## to the modulo pcgs <pcgs> with translation <transl>.
DeclareGlobalFunction( "AffineActionLayer" );
DeclareSynonym( "AffineOperationLayer",AffineActionLayer );
#############################################################################
##
#F GeneratorsCentrePGroup( <G> )
#F GeneratorsCenterPGroup( <G> )
##
DeclareGlobalFunction( "GeneratorsCentrePGroup" );
DeclareSynonym( "GeneratorsCenterPGroup", GeneratorsCentrePGroup );
#############################################################################
##
#F LinearOperationLayer( <G>, <gens>, <pcgs> )
#F LinearActionLayer( <G>, <gens>, <pcgs> )
##
## returns a list of matrices, one for each element of <gens>, which
## corresponds to the matrix action of <G> on the vector space corresponding
## to the modulo pcgs <pcgs>.
DeclareGlobalFunction( "LinearActionLayer" );
DeclareSynonym( "LinearOperationLayer",LinearActionLayer );
#############################################################################
##
#F VectorSpaceByPcgsOfElementaryAbelianGroup( <mpcgs>, <fld> )
##
## returns the vector space over <fld> corresponding to the modulo pcgs
## <mpcgs>. Note that <mpcgs> has to define an elementary abelian $p$-group
## where $p$ is the characteristic of <fld>.
DeclareGlobalFunction(
"VectorSpaceByPcgsOfElementaryAbelianGroup" );
#############################################################################
##
#F GapInputPcGroup( <grp>, <string> )
##
DeclareGlobalFunction( "GapInputPcGroup" );
#############################################################################
##
#O CanonicalSubgroupRepresentativePcGroup( <G>, <U> )
##
DeclareGlobalFunction( "CanonicalSubgroupRepresentativePcGroup" );
#############################################################################
##
#F CentrePcGroup( <grp> )
##
DeclareGlobalFunction( "CentrePcGroup" );
#############################################################################
##
#A OmegaSeries( G )
##
DeclareAttribute( "OmegaSeries", IsGroup );
#############################################################################
##
#E grppc.gd . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|