File: grppc.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (308 lines) | stat: -rw-r--r-- 10,553 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#############################################################################
##
#W  grppc.gd                    GAP Library                      Frank Celler
##
#H  @(#)$Id: grppc.gd,v 4.57.2.1 2005/10/14 08:45:40 gap Exp $
##
#Y  Copyright (C)  1996,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for groups with a polycyclic collector.
##
##  IsPcgs
##    a polycyclic generating system, also behaves like a pc sequence
##
##  IsPcGroup
##    a poylcyclic group whose elements family is defined by a collector
##
##  CanEasilyComputePcgs
##    a group that knows how to compute a pcgs relatively fast
##
##  HasDefiningPcgs
##    a group whose elements family is generated by a pcgs
##
##  HasHomePcgs
##    a group that knows a pcgs of a super group
##
Revision.grppc_gd :=
    "@(#)$Id: grppc.gd,v 4.57.2.1 2005/10/14 08:45:40 gap Exp $";


#############################################################################
##
#V  InfoPcGroup
##
DeclareInfoClass("InfoPcGroup");

#############################################################################
##
#M  CanEasilysortElements
##
InstallTrueMethod( CanEasilySortElements, IsPcGroup and IsFinite );


#############################################################################
##
#M  KnowsHowToDecompose( <G> )  . . . . . . . . . . always true for pc groups
##
InstallTrueMethod( KnowsHowToDecompose, IsPcGroup );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <G> )  always true for coll. of pc elts.
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses,
    IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection );


#############################################################################
##
#A  CanonicalPcgsWrtFamilyPcgs( <grp> )	. . . . . . .  with respect to family
##
DeclareAttribute( "CanonicalPcgsWrtFamilyPcgs", IsGroup );



#############################################################################
##
#A  CanonicalPcgsWrtHomePcgs( <grp> ) . . . . . . . . .  with respect to home
##
DeclareAttribute( "CanonicalPcgsWrtHomePcgs", IsGroup );



#############################################################################
##
#A  FamilyPcgs( <grp> ) . . . . . . . . . . . . . . . . .  pcgs of the family
##
DeclareAttribute( "FamilyPcgs", IsGroup );


InstallSubsetMaintenance( FamilyPcgs, IsGroup, IsGroup );


#############################################################################
##
#A  HomePcgs( <grp> ) . . . . . . . . . . . . . . . . . . .  pcgs of the home
##
DeclareAttribute( "HomePcgs", IsGroup );


InstallSubsetMaintenance( HomePcgs, IsGroup, IsGroup );


#############################################################################
##
#A  InducedPcgsWrtFamilyPcgs( <grp> ) . . . . . . . .  with respect to family
##
DeclareAttribute( "InducedPcgsWrtFamilyPcgs", IsGroup );


#############################################################################
##
#O  InducedPcgs( <pcgs>, <grp> )
##
##  computes a pcgs for <grp> which is induced by <pcgs>. If <pcgs> has
##  a parent pcgs, then the result is induced with respect to this parent
##  pcgs.
##
##  `InducedPcgs' is a wrapper function only. Therefore, methods for computing 
##  computing an induced pcgs should be installed for the
##  operation `InducedPcgsOp'.
##
DeclareOperation( "InducedPcgs", [IsPcgs,IsGroup] );

#############################################################################
##
#O  InducedPcgsOp( <pcgs>, <grp> )
##
##  computes a pcgs for <grp> which is induced by <pcgs>. <pcgs> must not
##  be an induced pcgs. This operation should not be called directly. 
##  Instead, please use `InducedPcgs' which caches its results.
##  
DeclareOperation( "InducedPcgsOp", [IsPcgs,IsGroup] );

#############################################################################
##
#A  ComputedInducedPcgses( <grp> )
##
##  This attribute stores previously computed induced generating systems
##  of the group <grp>. It is a list of the form
##  [<ppcgs_1>, <ipcgs_1>, <ppcgs_2>, <ipcgs_2>, ...],
##  where <ppcgs_n> is a parent pcgs and <igs_n> is the corresponding
##  induced generating system.
##  
DeclareAttribute ("ComputedInducedPcgses", IsGroup, "mutable");

#############################################################################
##
#F  SetInducedPcgs( <home>,<grp>,<pcgs> )
##
##  This function sets <pcgs> to be an <home>-induced pcgs for <grp> if the
##  `HomePcgs' of <grp> equals <home> and the `ParentPcgs' of <pcgs> equals
##  <home>. (This means <pcgs> is induced by <home>.) If <grp> has no
##  `HomePcgs' yet, it is assigned to <home> before this.
##  This function should be used in algorithms if a pcgs for a new subgroup
##  is computed that by this calculation is known to be compatible with the
##  home pcgs of the calculation.
DeclareGlobalFunction( "SetInducedPcgs" );

#############################################################################
##
#A  InducedPcgsWrtHomePcgs( <grp> ) . . . . . . . . . .  with respect to home
##
##  returns an induced pcgs for <grp> with respect to the home pcgs.
DeclareAttribute(
    "InducedPcgsWrtHomePcgs",
    IsGroup );



#############################################################################
##
#A  Pcgs( <G> ) . . . . . . . . . . . . . . . . . . . . . . pcgs of a group
##
##  returns a pcgs for the group <G>. 
##  If <grp> is not polycyclic it returns `fail' *and this result is not 
##  stored as attribute value*, in particular in this case the filter
##  `HasPcgs' is *not* set for <G>!
DeclareAttribute( "Pcgs", IsGroup );

#############################################################################
##
#A  GeneralizedPcgs( <G> )  . . . . . . . . . . . . . . . . . pcgs of a group
##
##  returns a generalized pcgs for the group <G>.
DeclareAttribute( "GeneralizedPcgs", IsGroup );

#############################################################################
##
#F  CanEasilyComputePcgs( <grp> ) . . . . .  group is willing to compute pcgs
##
##  This filter indicates whether it is possible to compute a pcgs for <grp>
##  cheaply. Clearly, <grp> must be polycyclic in this case. However, not
##  for every polycyclic group there is a method to compute a pcgs at low
##  costs. This filter is used in the method selection mainly.
##  Note that this filter may change its value from false to true. 
##
DeclareFilter( "CanEasilyComputePcgs" );

# to satisfy method installation requirements
InstallTrueMethod(IsGroup,CanEasilyComputePcgs);


#############################################################################
##
#O  SubgroupByPcgs( <G>, <pcgs> )
##
DeclareOperation( "SubgroupByPcgs", [IsGroup, IsPcgs] );


#############################################################################
##
#O  AffineOperation( <gens>, <basisvectors>, <linear>, <transl> )
#O  AffineAction( <gens>, <basisvectors>, <linear>, <transl> )
##
##  return a list of matrices, one for each element of <gens>, which
##  corresponds to the affine action of the elements in <gens> on the
##  basis <basisvectors> via <linear> with translation <transl>.
DeclareOperation( "AffineAction", 
    [ IsList, IsMatrix, IsFunction, IsFunction ] );
DeclareSynonym( "AffineOperation", AffineAction );


#############################################################################
##
#O  LinearOperation( <gens>, <basisvectors>, <linear> )
#O  LinearAction( <gens>, <basisvectors>, <linear> )
##
##  returns a list of matrices, one for each element of <gens>, which
##  corresponds to the matrix action of the elements in <gens> on the
##  basis <basisvectors> via <linear>.
DeclareOperation( "LinearAction", [ IsList, IsMatrix, IsFunction ] );
DeclareSynonym( "LinearOperation",LinearAction);


#############################################################################
##
#M  IsSolvableGroup
##
InstallTrueMethod(
    IsSolvableGroup,
    IsPcGroup );


#############################################################################
##
#F  AffineOperationLayer( <G>, <gens>, <pcgs>, <transl> )
#F  AffineActionLayer( <G>, <gens>, <pcgs>, <transl> )
##
##  returns a list of matrices, one for each element of <gens>, which
##  corresponds to the affine action of <G> on the vector space corresponding
##  to the modulo pcgs <pcgs> with translation <transl>.
DeclareGlobalFunction( "AffineActionLayer" );
DeclareSynonym( "AffineOperationLayer",AffineActionLayer );


#############################################################################
##
#F  GeneratorsCentrePGroup( <G> )
#F  GeneratorsCenterPGroup( <G> )
##
DeclareGlobalFunction( "GeneratorsCentrePGroup" );

DeclareSynonym( "GeneratorsCenterPGroup", GeneratorsCentrePGroup );


#############################################################################
##
#F  LinearOperationLayer( <G>, <gens>, <pcgs> )
#F  LinearActionLayer( <G>, <gens>, <pcgs> )
##
##  returns a list of matrices, one for each element of <gens>, which
##  corresponds to the matrix action of <G> on the vector space corresponding
##  to the modulo pcgs <pcgs>.
DeclareGlobalFunction( "LinearActionLayer" );
DeclareSynonym( "LinearOperationLayer",LinearActionLayer );


#############################################################################
##
#F  VectorSpaceByPcgsOfElementaryAbelianGroup( <mpcgs>, <fld> )
##
##  returns the vector space over <fld> corresponding to the modulo pcgs
##  <mpcgs>. Note that <mpcgs> has to define an elementary abelian $p$-group
##  where $p$ is the characteristic of <fld>.
DeclareGlobalFunction(
    "VectorSpaceByPcgsOfElementaryAbelianGroup" );

#############################################################################
##
#F  GapInputPcGroup( <grp>, <string> )
##
DeclareGlobalFunction( "GapInputPcGroup" );

#############################################################################
##
#O  CanonicalSubgroupRepresentativePcGroup( <G>, <U> )
##
DeclareGlobalFunction( "CanonicalSubgroupRepresentativePcGroup" );

#############################################################################
##
#F  CentrePcGroup( <grp> )
##
DeclareGlobalFunction( "CentrePcGroup" );

#############################################################################
##
#A  OmegaSeries( G )
##
DeclareAttribute( "OmegaSeries", IsGroup );

#############################################################################
##
#E  grppc.gd  . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##