File: grppcfp.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (114 lines) | stat: -rw-r--r-- 4,107 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#############################################################################
##
#W  grppcfp.gd                  GAP library                      Bettina Eick
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
Revision.grppcfp_gd :=
    "@(#)$Id: grppcfp.gd,v 4.15.2.1 2005/11/30 03:05:31 gap Exp $"; 

#############################################################################
##
#I  InfoSQ
##
DeclareInfoClass( "InfoSQ" );

#############################################################################
##
#F  PcGroupFpGroup( <G> )
##
##  creates a PcGroup <P> from an FpGroup (see Chapter "Finitely Presented
##  Groups") <G> whose presentation is polycyclic. The resulting group <P>
##  has generators corresponding to the generators of <G>. They are printed
##  in the same way as generators of <G>, but they lie in a different
##  family. If the pc presentation of <G> is not confluent, an error message
##  occurs.
#T  should this become a method?
DeclareGlobalFunction( "PcGroupFpGroup" );
DeclareGlobalFunction( "PcGroupFpGroupNC" );

#############################################################################
##
#F  InitEpimorphismSQ( F )
#F  InitEpimorphismSQ(<hom>)
##
##  If <F> is a finitiely presented group, this operation returns the SQ
##  epimorphism system corresponding to the largest abelian quotient of <F>.
##  If <hom> is a epimorphism from a finitely presented group to a pc
##  group, it returns the system coresponding to this epimorphism.
##  No argument checking is performed.
##  
DeclareGlobalFunction( "InitEpimorphismSQ" );

#############################################################################
##
#F  LiftEpimorphismSQ( epi, M, c )
##
##  if c is an integer, split extensions are searched. if c=0 only one is
##  returned, otherwise the subdirect product of all such extensions is
##  found.
DeclareGlobalFunction( "LiftEpimorphismSQ" );

#############################################################################
##
#F  BlowUpCocycleSQ( v, K, F )
##
DeclareGlobalFunction( "BlowUpCocycleSQ" );

#############################################################################
##
#F  TryModuleSQ( epi, M )
##
DeclareGlobalFunction( "TryModuleSQ" );

#############################################################################
##
#F  TryLayerSQ( epi, layer )
##
DeclareGlobalFunction( "TryLayerSQ" );

#############################################################################
##
#F  SolvableQuotient(<F>,<size> )
#F  SolvableQuotient(<F>,<primes> )
#F  SolvableQuotient(<F>,<tuples> )
#F  SQ(<F>,<...> )
##
##  This routine calls the solvable quotient algorithm for a finitely
##  presented group <F>. The quotient to be found can be specified in the
##  following ways: Specifying an integer <size> finds a quotient of size up
##  to <size> (if such large quotients exist). Specifying a list of primes
##  in <primes> finds the largest quotient involving the given primes.
##  Finally <tuples> can be used to prescribe a chief series.
##
##  `SQ' can be used as a synonym for `SolvableQuotient'.
##
DeclareGlobalFunction( "SolvableQuotient" );
DeclareSynonym( "SQ", SolvableQuotient);

#############################################################################
##
#F  EpimorphismSolvableQuotient(<F>,<param>)
##
##  computes an epimorphism from the finitely presented group <fpgrp> to the
##  largest solvable quotient given by <param> (specified as in 
##  `SolvableQuotient').
##
DeclareGlobalFunction("EpimorphismSolvableQuotient");

#############################################################################
##
#F  AllModulesSQ( epi, M )
##
##  returns a list of all permissible extensions of <epi> with the module
##  <M>.
DeclareGlobalFunction("AllModulesSQ");

#############################################################################
##
#F  EAPrimeLayerSQ( epi, prime )
##
##  returns the largest elementary abelian <prime> layer extending <epi>.
DeclareGlobalFunction("EAPrimeLayerSQ");