File: grpperm.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (246 lines) | stat: -rw-r--r-- 8,417 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#############################################################################
##
#W  grpperm.gd                  GAP library                    Heiko Thei"sen
##
#H  @(#)$Id: grpperm.gd,v 4.46.4.2 2005/08/21 20:03:34 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
Revision.grpperm_gd :=
    "@(#)$Id: grpperm.gd,v 4.46.4.2 2005/08/21 20:03:34 gap Exp $";


#############################################################################
##
#C  IsPermGroup( <obj> )
##
##  A permutation group is a  group of permutations on  a finite set
##  $\Omega$ of  positive integers. {\GAP} does *not*  require the user to
##  specify the operation domain  $\Omega$ when a permutation  group is
##  defined.
##
DeclareSynonym( "IsPermGroup", IsGroup and IsPermCollection );


#############################################################################
##
#M  IsSubsetLocallyFiniteGroup( <G> ) . . . . . .  for magmas of permutations
##
#T  Here we assume implicitly that all permutations are finitary!
#T  (What would be a permutation with unbounded largest moved point?
#T  Perhaps a permutation of possibly infinite order?)
##
InstallTrueMethod( IsSubsetLocallyFiniteGroup, IsPermCollection );


#############################################################################
##
#M  CanEasilySortElements
##
InstallTrueMethod( CanEasilySortElements, IsPermGroup and IsFinite );

#############################################################################
##
#M  KnowsHowToDecompose( <G> )  . . . . . . . .  always true for perm. groups
##
InstallTrueMethod( KnowsHowToDecompose, IsPermGroup );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <permcoll> ) . . . true for perm. colls.
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses, IsPermCollection );


#############################################################################
##
#F  MinimizeExplicitTransversal
##
DeclareGlobalFunction( "MinimizeExplicitTransversal" );


#############################################################################
##
#F  AddCosetInfoStabChain
##
DeclareGlobalFunction( "AddCosetInfoStabChain" );


#############################################################################
##
#F  NumberCoset
#F  CosetNumber
##
DeclareGlobalFunction( "NumberCoset" );

DeclareGlobalFunction( "CosetNumber" );


#############################################################################
##
#F  IndependentGeneratorsAbelianPPermGroup
##
DeclareGlobalFunction( "IndependentGeneratorsAbelianPPermGroup" );


#############################################################################
##
#F  OrbitPerms( <perms>, <pnt> )
##
##  returns the orbit of the positive integer <pnt>
##  under the group generated by the permutations in the list <perms>.
##
DeclareGlobalFunction( "OrbitPerms" );


#############################################################################
##
#F  OrbitsPerms( <perms>, <D> )
##
##  returns the list of orbits of the positive integers in the list <D>
##  under the group generated by the permutations in the list <perms>.
##
DeclareGlobalFunction( "OrbitsPerms" );


#############################################################################
##
#F  SylowSubgroupPermGroup
##
DeclareGlobalFunction( "SylowSubgroupPermGroup" );


#############################################################################
##
#F  SignPermGroup
##
DeclareGlobalFunction( "SignPermGroup" );


#############################################################################
##
#F  CycleStructuresGroup
##
DeclareGlobalFunction( "CycleStructuresGroup" );


#############################################################################
##
#F  ApproximateSuborbitsStabilizerPermGroup( <G>, <pnt> )
##
##  returns an approximation of the orbits of `Stabilizer( <G>, <pnt> )'
##  on all points of the orbit `Orbit( <G>, <pnt> )',
##  without computing the full point stabilizer;
##  As not all Schreier generators are used,
##  the result may represent the orbits of only a subgroup of the point
##  stabilizer.
##
DeclareGlobalFunction("ApproximateSuborbitsStabilizerPermGroup");


#############################################################################
##
#A  AllBlocks( <G> )
##
##  computes a list of representatives of all block systems for a
##  permutation group <G> acting transitively on the points moved by the
##  group.
##
DeclareAttribute( "AllBlocks", IsPermGroup );


#############################################################################
##
#A  TransitiveIdentification( <G> )
##
##  Let <G> be a permutation group, acting transitively on a set  of up to 30
##  points.  Then `TransitiveIdentification' will return the position of this
##  group in the transitive  groups library.  This means,  if <G> acts on
##  $m$ points and    `TransitiveIdentification'  returns $n$,  then <G>   is
##  permutation isomorphic to the group `TransitiveGroup(m,n)'.
##
##  Note: The points moved do *not* need to be [1..<n>], the group
##  $\langle (2,3,4),(2,3)\rangle$ is considered to be transitive on 3
##  points. If the group has several orbits on the points moved by it the
##  result of `TransitiveIdentification' is undefined.
##
DeclareAttribute( "TransitiveIdentification", IsPermGroup );

#############################################################################
##
#A  PrimitiveIdentification( <G> )
##
##  For a primitive permutation group for which an $S_n$-conjugate exists in
##  the library of primitive permutation groups (see~"Primitive Permutation
##  Groups"), this attribute returns the index position. That is <G> is
##  conjugate to
##  `PrimitiveGroup(NrMovedPoints(<G>),PrimitiveIdentification(<G>))'.
##
##  Methods only exist if the primitive groups library is installed.
##
##  Note: As this function uses the primitive groups library, the result is
##  only guaranteed to the same extent as this library. If it is incomplete,
##  `PrimitiveIdentification' might return an existing index number for a
##  group not in the library.
##
DeclareAttribute( "PrimitiveIdentification", IsPermGroup );

#############################################################################
##
#A  ONanScottType( <G> )
##
##  returns the type of <G> of a primitive permutation group <G>, according
##  to the O'Nan-Scott classification. The labelling of the different types
##  is not consistent in the literature, we use the following:
##  \beginlist
##  \item{1} Affine.
##  \item{2} Almost simple.
##  \item{3a} Diagonal, Socle consists of two normal subgroups.
##  \item{3b} Diagonal, Socle is minimal normal.
##  \item{4a} Product action with the first factor primitive of type 3a.
##  \item{4b} Product action with the first factor primitive of type 3b.
##  \item{4c} Product action with the first factor primitive of type 2.
##  \item{5} Twisted wreath product
##  \endlist
##  %%  See \cite{eickhulpkeXX} for correspondence to other labellings used
##  %%  in the literature.
##  As it can contain letters, the type is returned as a string.
##
##  If <G> is not a permutation group or does not act primitively on the
##  points moved by it, the result is undefined.
##
DeclareAttribute( "ONanScottType", IsPermGroup );

#############################################################################
##
#A  SocleTypePrimitiveGroup( <G> )
##
##  returns the socle type of a primitive permutation group. The socle of a
##  primitive group is the direct product of isomorphic simple groups,
##  therefore the type is indicated by a record with components `series',
##  `parameter' (both as described under
##  `IsomorphismTypeInfoFiniteSimpleGroup',
##  see~"IsomorphismTypeInfoFiniteSimpleGroup") and `width' for the number of
##  direct factors.
##
##  If <G> does not have a faithful primitive action, the result is undefined.
##
DeclareAttribute( "SocleTypePrimitiveGroup", IsPermGroup );

#############################################################################
##
#F  DiagonalSocleAction( <grp>,<n> )
##
##  returns the direct product of <n> copied of <grp> in diagonal action.
##
DeclareGlobalFunction( "DiagonalSocleAction" );

DeclareGlobalFunction("MovedPointsPerms");

#############################################################################
##
#E