1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#############################################################################
##
#W grpperm.gd GAP library Heiko Thei"sen
##
#H @(#)$Id: grpperm.gd,v 4.46.4.2 2005/08/21 20:03:34 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
Revision.grpperm_gd :=
"@(#)$Id: grpperm.gd,v 4.46.4.2 2005/08/21 20:03:34 gap Exp $";
#############################################################################
##
#C IsPermGroup( <obj> )
##
## A permutation group is a group of permutations on a finite set
## $\Omega$ of positive integers. {\GAP} does *not* require the user to
## specify the operation domain $\Omega$ when a permutation group is
## defined.
##
DeclareSynonym( "IsPermGroup", IsGroup and IsPermCollection );
#############################################################################
##
#M IsSubsetLocallyFiniteGroup( <G> ) . . . . . . for magmas of permutations
##
#T Here we assume implicitly that all permutations are finitary!
#T (What would be a permutation with unbounded largest moved point?
#T Perhaps a permutation of possibly infinite order?)
##
InstallTrueMethod( IsSubsetLocallyFiniteGroup, IsPermCollection );
#############################################################################
##
#M CanEasilySortElements
##
InstallTrueMethod( CanEasilySortElements, IsPermGroup and IsFinite );
#############################################################################
##
#M KnowsHowToDecompose( <G> ) . . . . . . . . always true for perm. groups
##
InstallTrueMethod( KnowsHowToDecompose, IsPermGroup );
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <permcoll> ) . . . true for perm. colls.
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses, IsPermCollection );
#############################################################################
##
#F MinimizeExplicitTransversal
##
DeclareGlobalFunction( "MinimizeExplicitTransversal" );
#############################################################################
##
#F AddCosetInfoStabChain
##
DeclareGlobalFunction( "AddCosetInfoStabChain" );
#############################################################################
##
#F NumberCoset
#F CosetNumber
##
DeclareGlobalFunction( "NumberCoset" );
DeclareGlobalFunction( "CosetNumber" );
#############################################################################
##
#F IndependentGeneratorsAbelianPPermGroup
##
DeclareGlobalFunction( "IndependentGeneratorsAbelianPPermGroup" );
#############################################################################
##
#F OrbitPerms( <perms>, <pnt> )
##
## returns the orbit of the positive integer <pnt>
## under the group generated by the permutations in the list <perms>.
##
DeclareGlobalFunction( "OrbitPerms" );
#############################################################################
##
#F OrbitsPerms( <perms>, <D> )
##
## returns the list of orbits of the positive integers in the list <D>
## under the group generated by the permutations in the list <perms>.
##
DeclareGlobalFunction( "OrbitsPerms" );
#############################################################################
##
#F SylowSubgroupPermGroup
##
DeclareGlobalFunction( "SylowSubgroupPermGroup" );
#############################################################################
##
#F SignPermGroup
##
DeclareGlobalFunction( "SignPermGroup" );
#############################################################################
##
#F CycleStructuresGroup
##
DeclareGlobalFunction( "CycleStructuresGroup" );
#############################################################################
##
#F ApproximateSuborbitsStabilizerPermGroup( <G>, <pnt> )
##
## returns an approximation of the orbits of `Stabilizer( <G>, <pnt> )'
## on all points of the orbit `Orbit( <G>, <pnt> )',
## without computing the full point stabilizer;
## As not all Schreier generators are used,
## the result may represent the orbits of only a subgroup of the point
## stabilizer.
##
DeclareGlobalFunction("ApproximateSuborbitsStabilizerPermGroup");
#############################################################################
##
#A AllBlocks( <G> )
##
## computes a list of representatives of all block systems for a
## permutation group <G> acting transitively on the points moved by the
## group.
##
DeclareAttribute( "AllBlocks", IsPermGroup );
#############################################################################
##
#A TransitiveIdentification( <G> )
##
## Let <G> be a permutation group, acting transitively on a set of up to 30
## points. Then `TransitiveIdentification' will return the position of this
## group in the transitive groups library. This means, if <G> acts on
## $m$ points and `TransitiveIdentification' returns $n$, then <G> is
## permutation isomorphic to the group `TransitiveGroup(m,n)'.
##
## Note: The points moved do *not* need to be [1..<n>], the group
## $\langle (2,3,4),(2,3)\rangle$ is considered to be transitive on 3
## points. If the group has several orbits on the points moved by it the
## result of `TransitiveIdentification' is undefined.
##
DeclareAttribute( "TransitiveIdentification", IsPermGroup );
#############################################################################
##
#A PrimitiveIdentification( <G> )
##
## For a primitive permutation group for which an $S_n$-conjugate exists in
## the library of primitive permutation groups (see~"Primitive Permutation
## Groups"), this attribute returns the index position. That is <G> is
## conjugate to
## `PrimitiveGroup(NrMovedPoints(<G>),PrimitiveIdentification(<G>))'.
##
## Methods only exist if the primitive groups library is installed.
##
## Note: As this function uses the primitive groups library, the result is
## only guaranteed to the same extent as this library. If it is incomplete,
## `PrimitiveIdentification' might return an existing index number for a
## group not in the library.
##
DeclareAttribute( "PrimitiveIdentification", IsPermGroup );
#############################################################################
##
#A ONanScottType( <G> )
##
## returns the type of <G> of a primitive permutation group <G>, according
## to the O'Nan-Scott classification. The labelling of the different types
## is not consistent in the literature, we use the following:
## \beginlist
## \item{1} Affine.
## \item{2} Almost simple.
## \item{3a} Diagonal, Socle consists of two normal subgroups.
## \item{3b} Diagonal, Socle is minimal normal.
## \item{4a} Product action with the first factor primitive of type 3a.
## \item{4b} Product action with the first factor primitive of type 3b.
## \item{4c} Product action with the first factor primitive of type 2.
## \item{5} Twisted wreath product
## \endlist
## %% See \cite{eickhulpkeXX} for correspondence to other labellings used
## %% in the literature.
## As it can contain letters, the type is returned as a string.
##
## If <G> is not a permutation group or does not act primitively on the
## points moved by it, the result is undefined.
##
DeclareAttribute( "ONanScottType", IsPermGroup );
#############################################################################
##
#A SocleTypePrimitiveGroup( <G> )
##
## returns the socle type of a primitive permutation group. The socle of a
## primitive group is the direct product of isomorphic simple groups,
## therefore the type is indicated by a record with components `series',
## `parameter' (both as described under
## `IsomorphismTypeInfoFiniteSimpleGroup',
## see~"IsomorphismTypeInfoFiniteSimpleGroup") and `width' for the number of
## direct factors.
##
## If <G> does not have a faithful primitive action, the result is undefined.
##
DeclareAttribute( "SocleTypePrimitiveGroup", IsPermGroup );
#############################################################################
##
#F DiagonalSocleAction( <grp>,<n> )
##
## returns the direct product of <n> copied of <grp> in diagonal action.
##
DeclareGlobalFunction( "DiagonalSocleAction" );
DeclareGlobalFunction("MovedPointsPerms");
#############################################################################
##
#E
|