File: grpreps.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (44 lines) | stat: -rw-r--r-- 1,955 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#############################################################################
##
#W  grpreps.gd                  GAP library                      Bettina Eick
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
Revision.grpreps_gd :=
    "@(#)$Id: grpreps.gd,v 4.8 2003/08/05 15:54:30 gap Exp $";

#############################################################################
##
#O  AbsoluteIrreducibleModules( <G>, <F>, <dim> )
#O  AbsolutIrreducibleModules( <G>, <F>, <dim> )
##
##  returns a list of length 2. The first entry is a generating system of
##  <G>. The second entry is a list of all absolute irreducible modules of
##  <G> over the field <F> in dimension <dim>, given as MeatAxe modules
##  (see~"GModuleByMats").
DeclareOperation( "AbsolutIrreducibleModules", [ IsGroup, IsField, IsInt ] );
DeclareSynonym("AbsoluteIrreducibleModules",AbsolutIrreducibleModules);

#############################################################################
##
#O  IrreducibleModules( <G>, <F>, <dim> )
##
##  returns a list of length 2. The first entry is a generating system of
##  <G>. The second entry is a list of all irreducible modules of
##  <G> over the field <F> in dimension <dim>, given as MeatAxe modules
##  (see~"GModuleByMats").
DeclareOperation( "IrreducibleModules", [ IsGroup, IsField, IsInt ] );

#############################################################################
##
#O  RegularModule( <G>, <F> )
##
##  returns a list of length 2. The first entry is a generating system of
##  <G>. The second entry is the regular module of <G> over <F>, given as a
##  MeatAxe module (see~"GModuleByMats").
DeclareOperation( "RegularModule", [ IsGroup, IsField ] );

#############################################################################
DeclareGlobalFunction( "RegularModuleByGens" );