1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
#############################################################################
##
#W grpreps.gd GAP library Bettina Eick
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
Revision.grpreps_gd :=
"@(#)$Id: grpreps.gd,v 4.8 2003/08/05 15:54:30 gap Exp $";
#############################################################################
##
#O AbsoluteIrreducibleModules( <G>, <F>, <dim> )
#O AbsolutIrreducibleModules( <G>, <F>, <dim> )
##
## returns a list of length 2. The first entry is a generating system of
## <G>. The second entry is a list of all absolute irreducible modules of
## <G> over the field <F> in dimension <dim>, given as MeatAxe modules
## (see~"GModuleByMats").
DeclareOperation( "AbsolutIrreducibleModules", [ IsGroup, IsField, IsInt ] );
DeclareSynonym("AbsoluteIrreducibleModules",AbsolutIrreducibleModules);
#############################################################################
##
#O IrreducibleModules( <G>, <F>, <dim> )
##
## returns a list of length 2. The first entry is a generating system of
## <G>. The second entry is a list of all irreducible modules of
## <G> over the field <F> in dimension <dim>, given as MeatAxe modules
## (see~"GModuleByMats").
DeclareOperation( "IrreducibleModules", [ IsGroup, IsField, IsInt ] );
#############################################################################
##
#O RegularModule( <G>, <F> )
##
## returns a list of length 2. The first entry is a generating system of
## <G>. The second entry is the regular module of <G> over <F>, given as a
## MeatAxe module (see~"GModuleByMats").
DeclareOperation( "RegularModule", [ IsGroup, IsField ] );
#############################################################################
DeclareGlobalFunction( "RegularModuleByGens" );
|