1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
#############################################################################
##
#W ideal.gd GAP library Thomas Breuer
##
#H @(#)$Id: ideal.gd,v 4.12 2002/04/15 10:04:53 sal Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for ideals.
#1
## A *left ideal* in a ring $R$ is a subring of $R$
## that is closed under multiplication with elements of $R$ from the left.
##
## A *right ideal* in a ring $R$ is a subring of $R$
## that is closed under multiplication with elements of $R$ from the right.
##
## A *two-sided ideal* or simply *ideal* in a ring $R$ is both a left ideal
## and a right ideal in $R$.
##
## So being a (left/right/two-sided) ideal is not a property of a domain
## but refers to the acting ring(s).
## Hence we must ask, e.~g., `IsIdeal( <R>, <I> )' if we want to know
## whether the ring <I> is an ideal in the ring <R>.
## The property `IsIdealInParent' can be used to store whether a ring is an
## ideal in its parent.
##
## (Whenever the term `Ideal' occurs without specifying prefix `Left' or
## `Right', this means the same as `TwoSidedIdeal'. Conversely, any
## occurrence of `TwoSidedIdeal' can be substituted by `Ideal'.)
##
## For any of the above kinds of ideals, there is a notion of generators,
## namely `GeneratorsOfLeftIdeal', `GeneratorsOfRightIdeal', and
## `GeneratorsOfTwoSidedIdeal'.
## The acting rings can be accessed as `LeftActingRingOfIdeal' and
## `RightActingRingOfIdeal', respectively.
## Note that ideals are detected from known values of these attributes,
## especially it is assumed that whenever a domain has both a left and a
## right acting ring then these two are equal.
##
## Note that we cannot use `LeftActingDomain' and `RightActingDomain' here,
## since ideals in algebras are themselves vector spaces, and such a space
## can of course also be a module for an action from the right.
## In order to make the usual vector space functionality automatically
## available for ideals, we have to distinguish the left and right module
## structure from the additional closure properties of the ideal.
##
## Further note that the attributes denoting ideal generators and acting
## ring are used to create ideals if this is explicitly wanted, but the
## ideal relation in the sense of `IsIdeal' is of course independent of the
## presence of the attribute values.
##
## Ideals are constructed with `LeftIdeal', `RightIdeal', `TwoSidedIdeal'.
## Principal ideals of the form $x * R$, $R * x$, $R * x * R$ can also be
## constructed with a simple multiplication.
##
## Currently many methods for dealing with ideals need linear algebra to
## work, so they are mainly applicable to ideals in algebras.
##
#W The sum of two left/right/two-sided ideals with same acting ring can be
#W formed, it is again an ideal.
#W The product of two ideals ...
##
Revision.ideal_gd :=
"@(#)$Id: ideal.gd,v 4.12 2002/04/15 10:04:53 sal Exp $";
#############################################################################
##
#F TwoSidedIdeal( <R>, <gens>[, "basis"] )
#F Ideal( <R>, <gens>[, "basis"] )
#F LeftIdeal( <R>, <gens>[, "basis"] ) . . left ideal in <R> gen. by <gens>
#F RightIdeal( <R>, <gens>[, "basis"] ) . right ideal in <R> gen. by <gens>
##
## Let <R> be a ring, and <gens> a list of collection of elements in <R>.
## `TwoSidedIdeal', `LeftIdeal', and `RightIdeal' return the two-sided,
## left, or right ideal, respectively, $I$ in <R> that is generated by
## <gens>.
## The ring <R> can be accessed as `LeftActingRingOfIdeal' or
## `RightActingRingOfIdeal'
## (or both) of $I$.
##
## If <R> is a left $F$-module then also $I$ is a left $F$-module,
## in particular the `LeftActingDomain' (see~"LeftActingDomain") values of
## <R> and $I$ are equal.
##
## If the optional argument `\"basis\"' is given then <gens> are assumed to
## be a list of basis vectors of $I$ viewed as a free $F$-module.
## (This is mainly applicable to ideals in algebras.)
## In this case, it is *not* checked whether <gens> really is linearly
## independent and whether <gens> is a subset of <R>.
##
## `Ideal' is simply a synonym of `TwoSidedIdeal'.
##
DeclareGlobalFunction( "TwoSidedIdeal" );
DeclareSynonym( "Ideal", TwoSidedIdeal );
DeclareGlobalFunction( "LeftIdeal" );
DeclareGlobalFunction( "RightIdeal" );
#############################################################################
##
#F TwoSidedIdealNC( <R>, <gens>[, "basis"] )
#F IdealNC( <R>, <gens>[, "basis"] )
#F LeftIdealNC( <R>, <gens>[, "basis"] )
#F RightIdealNC( <R>, <gens>[, "basis"] )
##
## The effects of `TwoSidedIdealNC', `LeftIdealNC', and `RightIdealNC' are
## the same as `TwoSidedIdeal', `LeftIdeal', and `RightIdeal', respectively
## (see~"TwoSidedIdeal"), but they do not check whether all entries
## of <gens> lie in <R>.
##
DeclareGlobalFunction( "TwoSidedIdealNC" );
DeclareSynonym( "IdealNC", TwoSidedIdealNC );
DeclareGlobalFunction( "LeftIdealNC" );
DeclareGlobalFunction( "RightIdealNC" );
#############################################################################
##
#O IsTwoSidedIdeal( <R>, <I> )
#O IsLeftIdeal( <R>, <I> )
#O IsRightIdeal( <R>, <I> )
#P IsTwoSidedIdealInParent( <I> )
#P IsLeftIdealInParent( <I> )
#P IsRightIdealInParent( <I> )
##
## The properties `IsTwoSidedIdealInParent' etc., are attributes of the
## ideal, and once known they are stored in the ideal.
##
InParentFOA( "IsTwoSidedIdeal", IsRing, IsRing, DeclareProperty );
InParentFOA( "IsLeftIdeal", IsRing, IsRing, DeclareProperty );
InParentFOA( "IsRightIdeal", IsRing, IsRing, DeclareProperty );
DeclareSynonym( "IsIdeal", IsTwoSidedIdeal );
DeclareSynonym( "IsIdealOp", IsTwoSidedIdealOp );
DeclareSynonymAttr( "IsIdealInParent", IsTwoSidedIdealInParent );
InstallTrueMethod( IsLeftIdealInParent, IsTwoSidedIdealInParent );
InstallTrueMethod( IsRightIdealInParent, IsTwoSidedIdealInParent );
InstallTrueMethod( IsTwoSidedIdealInParent,
IsLeftIdealInParent and IsRightIdealInParent );
#############################################################################
##
#O TwoSidedIdealByGenerators( <R>, <gens> ) . . ideal in <R> gen. by <gens>
#O IdealByGenerators( <R>, <gens> )
##
## `TwoSidedIdealByGenerators' returns the ring that is generated by the
## elements of the collection <gens> under addition, multiplication, and
## multiplication with elements of the ring <R> from the left and from the
## right.
##
## <R> can be accessed by `LeftActingRingOfIdeal' or
## `RightActingRingOfIdeal',
## <gens> can be accessed by `GeneratorsOfTwoSidedIdeal'.
##
DeclareOperation( "TwoSidedIdealByGenerators", [ IsRing, IsCollection ] );
DeclareSynonym( "IdealByGenerators", TwoSidedIdealByGenerators );
#############################################################################
##
#O LeftIdealByGenerators( <R>, <gens> )
##
## `LeftIdealByGenerators' returns the ring that is generated by the
## elements of the collection <gens> under addition, multiplication, and
## multiplication with elements of the ring <R> from the left.
##
## <R> can be accessed by `LeftActingRingOfIdeal',
## <gens> can be accessed by `GeneratorsOfLeftIdeal'.
##
DeclareOperation( "LeftIdealByGenerators", [ IsRing, IsCollection ] );
#############################################################################
##
#O RightIdealByGenerators( <R>, <gens> )
##
## `RightIdealByGenerators' returns the ring that is generated by the
## elements of the collection <gens> under addition, multiplication, and
## multiplication with elements of the ring <R> from the right.
##
## <R> can be accessed by `RightActingRingOfIdeal',
## <gens> can be accessed by `GeneratorsOfRightIdeal'.
##
DeclareOperation( "RightIdealByGenerators", [ IsRing, IsCollection ] );
#############################################################################
##
#A GeneratorsOfTwoSidedIdeal( <I> )
#A GeneratorsOfIdeal( <I> )
##
## is a list of generators for the bi-ideal <I>, with respect to the action of
## `LeftActingRingOfIdeal( <I> )' from the left and the action of
## `RightActingRingOfIdeal( <I> )'from the right.
##
## Note that `LeftActingRingOfIdeal(<I>)' and `RightActingRingOfIdeal(<I>)'
## coincide if <I> is a two-sided ideal.
##
DeclareAttribute( "GeneratorsOfTwoSidedIdeal", IsRing );
DeclareSynonymAttr( "GeneratorsOfIdeal", GeneratorsOfTwoSidedIdeal );
#############################################################################
##
#A GeneratorsOfLeftIdeal( <I> )
##
## is a list of generators for the left ideal <I>, with respect to the
## action of
## `LeftActingRingOfIdeal( <I> )' from the left.
##
DeclareAttribute( "GeneratorsOfLeftIdeal", IsRing );
#############################################################################
##
#A GeneratorsOfRightIdeal( <I> )
##
## is a list of generators for the right ideal <I>, with respect to the
## action of
## `RightActingRingOfIdeal( <I> )' from the right.
##
DeclareAttribute( "GeneratorsOfRightIdeal", IsRing );
#############################################################################
##
#A LeftActingRingOfIdeal( <I> )
#A RightActingRingOfIdeal( <I> )
##
DeclareAttribute( "LeftActingRingOfIdeal", IsRing );
DeclareAttribute( "RightActingRingOfIdeal", IsRing );
#############################################################################
##
#O AsLeftIdeal( <R>, <S> )
#O AsRightIdeal( <R>, <S> )
#O AsTwoSidedIdeal( <R>, <S> )
##
## Let <S> be a subring of <R>.
##
## If <S> is a left ideal in <R> then `AsLeftIdeal' returns this left ideal,
## otherwise `fail' is returned.
## If <S> is a right ideal in <R> then `AsRightIdeal' returns this right
## ideal, otherwise `fail' is returned.
## If <S> is a two-sided ideal in <R> then `AsTwoSidedIdeal' returns this
## two-sided ideal, otherwise `fail' is returned.
##
DeclareOperation( "AsLeftIdeal", [ IsRing, IsRing ] );
DeclareOperation( "AsRightIdeal", [ IsRing, IsRing ] );
DeclareOperation( "AsTwoSidedIdeal", [ IsRing, IsRing ] );
#############################################################################
##
#E
|