File: listcoef.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (418 lines) | stat: -rw-r--r-- 15,936 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#############################################################################
##
#W  listcoef.gd                 GAP Library                      Frank Celler
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
Revision.listcoef_gd :=
    "@(#)$Id: listcoef.gd,v 4.27.4.2 2006/02/22 12:26:39 sal Exp $";


#1
##  The following operations all perform arithmetic on row vectors.
##  given as homogeneous lists of the same length, containing
##  elements of a commutative ring.
##
##  There are two reasons for using  `AddRowVector'
##  in preference to arithmetic operators. Firstly, the three argument 
##  form has no single-step equivalent. Secondly
##  `AddRowVector' changes its first argument in-place, rather than allocating
##  a new vector to hold the result, and may thus produce less garbage.
##

#############################################################################
##
#O  AddRowVector( <dst>, <src>, [ <mul> [,<from>, <to>]] )
##
##  Adds the product of <src> and <mul> to <dst>, changing <dst>.
##  If <from> and <to> are given then only the index range `[<from>..<to>]' is
##  guaranteed to be affected. Other indices MAY be affected, if it is 
##  more convenient to do so. Even when <from> and <to> are given,
##  <dst> and <src> must be row vectors of the *same* length.
##
##  If <mul> is not given either then this Operation simply adds <src> to <dst>.
##
DeclareOperation(
    "AddRowVector",
    [ IsMutable and IsList, IsList, IsMultiplicativeElement, IsPosInt,
      IsPosInt ] );

#############################################################################
##
#O  AddCoeffs( <list1>, <poss1>, <list2>, <poss2>, <mul> )
#O  AddCoeffs( <list1>, <list2>, <mul> )
#O  AddCoeffs( <list1>, <list2> )
##
##  `AddCoeffs' adds the entries  of `<list2>\{<poss2>\}', multiplied by the
##  scalar <mul>, to
##  `<list1>\{<poss1>\}'.  Non-existing  entries  in  <list1> are assumed  to  be
##  zero.  The position of the right-most non-zero element is returned.
##
##  If the ranges <poss1> and <poss2> are not given, they are assumed to
##  span the whole vectors. If the scalar <mul> is omitted, one is used as a
##  default.
##
##  Note  that it is  the responsibility  of the  caller  to ensure  that the
##  <list2> has elements at position <poss2> and that the result (in <list1>)
##  will be a dense list.
##
##  The function is free to remove trailing (right-most) zeros.
##
DeclareOperation(
    "AddCoeffs",
        [ IsMutable and IsList, 
          IsList, IsList, IsList, IsMultiplicativeElement ] );


#############################################################################
##
#O  MultRowVector( <list1>, <poss1>, <list2>, <poss2>, <mul> )
#O  MultRowVector( <list>, <mul> )
##
##  The five-argument version of this Operation replaces
##  `<list1>[<poss1>[<i>]]' by `<mul>*<list2>[<poss2>[<i>]]' for <i>
##  between 1 and `Length(<poss1>)'.
##
##  The two-argument version simply multiplies each element of <list>, 
##  in-place, by <mul>.

DeclareOperation(
    "MultRowVector",
        [ IsMutable and IsList, 
          IsList, IsList, IsList, IsMultiplicativeElement ] );

#############################################################################
##
#O  CoeffsMod( <list1>, [<len1>,] <mod> )
##
##  returns the coefficient list obtained by reducing the entries in <list1>
##  modulo <mod>. After reducing it shrinks the list to remove trailing
##  zeroes.
DeclareOperation(
    "CoeffsMod",
    [ IsList, IsInt, IsInt ] );

#2
##  The following operations all perform arithmetic on univariate
##  polynomials given by their coefficient lists. These lists can have
##  different lengths but must be dense homogeneous lists containing
##  elements of a commutative ring.
##  Not all input lists may be empty.
##
##  In the following descriptions we will always assume that <list1> is the
##  coefficient list of the polynomial <pol1> and so forth.
##  If length parameter <leni> is not given, it is set to the length of
##  <listi> by default.

#############################################################################
##
#O  MultCoeffs( <list1>, <list2>[, <len2>], <list3>[, <len3>] )
##
##  * Only used internally *
##  Let <pol2> (and <pol3>) be polynomials given by the first <len2> (<len3>)
##  entries of the coefficient list <list2> (<list3>).
##  If <len2> and <len3> are omitted, they default to the lengths of <list2>
##  and <list3>.
##  This operation changes <list1> to the coefficient list of the product
##  of <pol2> with <pol3>.
##  This operation changes <list1> which therefore must be a mutable list.
##  The operations returns the position of the last non-zero entry of the
##  result but is not guaranteed to remove trailing zeroes.
DeclareOperation(
    "MultCoeffs",
    [ IsMutable and IsList, IsList, IsInt, IsList, IsInt ] );

#############################################################################
##
#O  PowerModCoeffs( <list1>[, <len1>], <exp>, <list2>[, <len2>] )
##
##  Let $p_1$ and $p_2$ be polynomials whose coefficients are given by the
##  first <len1> resp. <len2> entries of the lists <list1> and <list2>,
##  respectively.
##  If <len1> and <len2> are omitted, they default to the lengths of <list1>
##  and <list2>.
##  Let <exp> be a positive integer.
##  `PowerModCoeffs' returns the coefficient list of the remainder
##  when dividing the <exp>-th power of $p_1$ by $p_2$.
##  The coefficients are reduced already while powers are computed,
##  therefore avoiding an explosion in list length.
##
DeclareOperation(
    "PowerModCoeffs",
    [ IsList, IsInt, IsInt, IsList, IsInt ] );


#############################################################################
##
#O  ProductCoeffs( <list1>, [<len1>,] <list2> [,<len2>] )
##
##  Let <pol1> (and <pol2>) be polynomials given by the first <len1> (<len2>)
##  entries of the coefficient list <list2> (<list2>).
##  If <len1> and <len2> are omitted, they default to the lengths of <list1>
##  and <list2>.
##  This operation returns the coefficient list of the product of <pol1> and
##  <pol2>.
DeclareOperation(
    "ProductCoeffs",
    [ IsList, IsInt, IsList, IsInt ] );


#############################################################################
##
#O  ReduceCoeffs( <list1> [,<len1>], <list2> [,<len2>] )
##
##  changes <list1> to the coefficient list of the remainder when dividing
##  <pol1> by <pol2>.
##  This operation changes <list1> which therefore must be a mutable list.
##  The operations returns the position of the last non-zero entry of the
##  result but is not guaranteed to remove trailing zeroes.
DeclareOperation(
    "ReduceCoeffs",
    [ IsMutable and IsList, IsInt, IsList, IsInt ] );


#############################################################################
##
#O  ReduceCoeffsMod( <list1>, [<len1>,] <list2>, [<len2>,] <mod> )
##
##  changes <list1> to the coefficient list of the remainder when dividing
##  <pol1> by <pol2> modulo <mod>. <mod> must be a positive integer.
##  This operation changes <list1> which therefore must be a mutable list.
##  The operations returns the position of the last non-zero entry of the
##  result but is not guaranteed to remove trailing zeroes.
DeclareOperation(
    "ReduceCoeffsMod",
    [ IsMutable and IsList, IsInt, IsList, IsInt, IsInt ] );

#############################################################################
##
#O  QuotRemCoeffs( <list1>[, <len1>], <list2>[, <len2>])
##
##  returns a length 2 list containing the quotient and remainder from the 
##  division of the polynomial represented by [the first <len1> entries of]
##  <list1> by that represented by [the first <len2> entries of] <list2>
##
DeclareOperation( "QuotRemCoeffs", [IsList, IsInt, IsList, IsInt]);


#############################################################################
##
#F  ProductPol( <coeffs_f>, <coeffs_g> )  . . . .  product of two polynomials
##
##  *@ OBSOLETE @*
##  Let <coeffs_f> and <coeffs_g> be coefficients lists of two univariate
##  polynomials $f$ and $g$, respectively.
##  `ProductPol' returns the coefficients list of the product $f g$.
##
##  The coefficient of $x^i$ is assumed to be stored at position $i+1$ in
##  the coefficients lists.
##
DeclareGlobalFunction( "ProductPol" );


#############################################################################
##
#F  ValuePol( <coeff>, <x> ) . . . .  evaluate a polynomial at a point
##
##  Let <coeff> be the coefficients list of a univariate polynomial $f$,
##  and <x> a ring element. Then
##  `ValuePol' returns the value $f(<x>)$.
##
##  The coefficient of $x^i$ is assumed to be stored at position $i+1$ in
##  the coefficients list.
##
DeclareOperation( "ValuePol",[IsList,IsRingElement] );


#3
##  The following functions change coefficient lists by shifting or
##  trimming.

#############################################################################
##
#O  RemoveOuterCoeffs( <list>, <coef> )
##
##  removes <coef> at the beginning and at the end of <list> and returns the
##  number of elements removed at the beginning.
DeclareOperation(
    "RemoveOuterCoeffs",
    [ IsMutable and IsList, IsObject ] );


#############################################################################
##
#O  ShiftedCoeffs( <list>, <shift> )
##
##  produces a new coefficient list <new> obtained by the rule
##  `<new>[i+<shift>]:=<list>[i]' and filling initial holes by the
##  appropriate zero.
DeclareOperation(
    "ShiftedCoeffs",
    [ IsList, IsInt ] );

#############################################################################
##
#O  LeftShiftRowVector( <list>, <shift> )
##
##  changes <list> by assigning
##  `<list>[i]:=<list>[i+<shift>]' and removing the last <shift> entries of
##  the result.
DeclareOperation(
    "LeftShiftRowVector",
    [ IsMutable and IsList, IsPosInt ] );

#############################################################################
##
#O  RightShiftRowVector( <list>, <shift>, <fill> )
##
##  changes <list> by assigning
##  `<list>[i+<shift>]:=<list>[i]' and filling each of the <shift> first
##  entries with <fill>.
DeclareOperation(
    "RightShiftRowVector",
    [ IsMutable and IsList, IsPosInt, IsObject ] );


#############################################################################
##
#O  ShrinkCoeffs( <list> )
##
##  removes trailing zeroes from <list>. It returns the position of the last
##  non-zero entry, that is the length of <list> after the operation.
DeclareOperation(
    "ShrinkCoeffs",
    [ IsMutable and IsList ] );


#############################################################################
##
#O  ShrinkRowVector( <list> )
##
##  removes trailing zeroes from the list <list>.
##
DeclareOperation(
    "ShrinkRowVector",
    [ IsMutable and IsList ] );


#############################################################################
##
#O  PadCoeffs( <list>, <len>[, <value>] )
##
##  extends <list> until its length is at least <len> by adding identical 
##  entries <value> at the end
##
##  if <value> is omitted, Zero(<list>[1]) is used. In this case <list> 
##  must not be empty.
##

DeclareOperation("PadCoeffs",[IsList and IsMutable, IsPosInt, IsObject]);
DeclareOperation("PadCoeffs",[IsList and IsMutable and IsAdditiveElementWithZeroCollection, 
        IsPosInt]);



#4
##  The following functions perform operations on Finite fields vectors
##  considered as code words in a linear code.


#############################################################################
##
#O  WeightVecFFE( <vec> )
##
##  returns the weight of the finite field vector <vec>, i.e. the number of
##  nonzero entries.
DeclareOperation("WeightVecFFE",[IsList]);

#############################################################################
##
#O  DistanceVecFFE( <vec1>,<vec2> )
##
##  returns the distance between the two vectors <vec1> and <vec2>, which
##  must have the same length and whose elements must lie in a common field.
##  The distance is the number of places where <vec1> and <vec2> differ.
DeclareOperation("DistanceVecFFE",[IsList,IsList]);

#############################################################################
##
#O  DistancesDistributionVecFFEsVecFFE( <vecs>,<vec> )
##
##  returns the distances distribution of the vector <vec> to the vectors in
##  the list <vecs>. All vectors must have the same length, and all elements
##  must lie in a common field. The distances distribution is a list <d> of
##  length `Length(<vec>)+1', such that the value `<d>[<i>]' is the number
##  of vectors in <vecs> that have distance `<i>+1' to <vec>.
DeclareOperation("DistancesDistributionVecFFEsVecFFE",[IsList,IsList]);

#############################################################################
##
#O  DistancesDistributionMatFFEVecFFE( <mat>,<f>,<vec> )
##
##  returns the distances distribution of the vector <vec> to the vectors in
##  the vector space generated by the rows of the matrix <mat> over the
##  finite field <f>. The length of the rows of <mat> and the length of
##  <vec> must be equal, and all elements must lie in <f>. The rows of <mat>
##  must be linearly independent. The distances distribution is a list <d>
##  of length `Length(<vec>)+1', such that the value `<d>[<i>]' is the
##  number of vectors in the vector space generated by the rows of <mat>
##  that have distance `<i>+1' to <vec>.
DeclareOperation("DistancesDistributionMatFFEVecFFE",
  [IsMatrix,IsFFECollection, IsList]);

#############################################################################
##
#O  AClosestVectorCombinationsMatFFEVecFFE(<mat>,<f>,<vec>,<l>,<stop>)
#O  AClosestVectorCombinationsMatFFEVecFFECoords(<mat>,<f>,<vec>,<l>,<stop>)
##
##  These functions run through the <f>-linear combinations of the
##  vectors in the rows of the matrix <mat> that can be written as
##  linear combinations of exactly <l> rows (that is without using
##  zero as a coefficient). The length of the rows of <mat> and the
##  length of <vec> must be equal, and all elements must lie in
##  <f>. The rows of <mat> must be linearly
##  independent. `AClosestVectorCombinationsMatFFEVecFFE' returns a
##  vector from these that is closest to the vector <vec>. If it finds
##  a vector of distance at most <stop>, which must be a nonnegative
##  integer, then it stops immediately and returns this vector.
##
## `AClosestVectorCombinationsMatFFEVecFFECoords' returns a length 2
## list
##  containing the same closest vector and also a vector <v> with exactly <l> non-zero
##  entries, such that <v> times <mat> is the closest vector.
##

DeclareOperation("AClosestVectorCombinationsMatFFEVecFFE",
  [IsMatrix,IsFFECollection, IsList, IsInt,IsInt]);

DeclareOperation("AClosestVectorCombinationsMatFFEVecFFECoords",
  [IsMatrix,IsFFECollection, IsList, IsInt,IsInt]);

#############################################################################
##
#O  CosetLeadersMatFFE( <mat>,<f> )
##
##  returns a list of representatives of minimal weight for the cosets of a
##  code. <mat> must be a *check matrix* for the code, the code is defined
##  over the finite field <f>.   All rows of <mat> must have the same
##  length, and all elements must lie in <f>. The rows of <mat> must be
##  linearly independent.
DeclareOperation("CosetLeadersMatFFE",[IsMatrix,IsFFECollection]);

#############################################################################
##
#O AddToListEntries( <list>, <poss>, <x> )
##
##  modifies <list> in place by adding <x> to each of the entries
##  indexed by <poss>.
##
DeclareOperation("AddToListEntries", [ IsList and
        IsExtAElementCollection and IsMutable, IsList
        and IsCyclotomicCollection, IsExtAElement ] );

#############################################################################
##
#E  listcoef.gd . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##