1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
#############################################################################
##
#W matint.gd GAP library A. Storjohann
#W R. Wainwright
#W A. Hulpke
##
#H @(#)$Id: matint.gd,v 4.26 2003/05/23 19:58:16 gap Exp $
##
#Y Copyright (C) 2003 The GAP Group
##
## This file contains declarations for the operations of normal forms for
## integral matrices.
##
Revision.matint_gd:=
"@(#)$Id: matint.gd,v 4.26 2003/05/23 19:58:16 gap Exp $";
#############################################################################
##
#V InfoMatInt
##
## The info class for Integer matrix operations is `InfoMatInt'.
##
DeclareInfoClass( "InfoMatInt" );
#############################################################################
##
#O TriangulizedIntegerMat(<mat>)
##
## Computes an upper triangular form of a matrix with integer entries.
## It returns a immutable matrix in upper triangular form.
DeclareOperation("TriangulizedIntegerMat",[IsMatrix]);
#############################################################################
##
#O TriangulizeIntegerMat(<mat>)
##
## Changes <mat> to be in upper triangular form. (The result is the same as
## that of `TriangulizedIntegerMat', but <mat> will be modified, thus using
## less memory.)
## If <mat> is immutable an error will be triggered.
DeclareOperation("TriangulizeIntegerMat",[IsMatrix]);
#############################################################################
##
#O TriangulizedIntegerMatTransform(<mat>)
##
## Computes an upper triangular form of a matrix with integer entries.
## It returns a record with a component `normal' (an immutable matrix in
## upper triangular form) and a component `rowtrans' that gives the
## transformations done to the original matrix to bring it into upper
## triangular form.
DeclareOperation("TriangulizedIntegerMatTransform",[IsMatrix]);
DeclareSynonym("TriangulizedIntegerMatTransforms",
TriangulizedIntegerMatTransform);
#############################################################################
##
#O HermiteNormalFormIntegerMat(<mat>)
##
## This operation computes the Hermite normal form of a matrix <mat> with
## integer entries. It returns a immutable matrix in HNF.
DeclareOperation("HermiteNormalFormIntegerMat",[IsMatrix]);
#############################################################################
##
#O HermiteNormalFormIntegerMatTransform(<mat>)
##
## This operation computes the Hermite normal form of a matrix <mat> with
## integer entries. It returns a record with components `normal' (a matrix
## $H$) and `rowtrans' (a matrix $Q$) such that $QA=H$
DeclareOperation("HermiteNormalFormIntegerMatTransform",[IsMatrix]);
DeclareSynonym("HermiteNormalFormIntegerMatTransforms",
HermiteNormalFormIntegerMatTransform);
#############################################################################
##
#O SmithNormalFormIntegerMat(<mat>)
##
## This operation computes the Smith normal form of a matrix <mat> with
## integer entries. It returns a new immutable matrix in the Smith normal
## form.
DeclareOperation("SmithNormalFormIntegerMat",[IsMatrix]);
#############################################################################
##
#O SmithNormalFormIntegerMatTransforms(<mat>)
##
## This operation computes the Smith normal form of a matrix <mat> with
## integer entries. It returns a record with components `normal' (a matrix
## $S$), `rowtrans' (a matrix $P$), and `coltrans' (a matrix $Q$) such that
## $PAQ=S$.
DeclareOperation("SmithNormalFormIntegerMatTransforms",[IsMatrix]);
#############################################################################
##
#O DiagonalizeIntMat(<mat>)
##
## This function changes <mat> to its SNF.
## (The result is the same as
## that of `SmithNormalFormIntegerMat', but <mat> will be modified, thus using
## less memory.)
## If <mat> is immutable an error will be triggered.
DeclareGlobalFunction( "DiagonalizeIntMat" );
#############################################################################
##
#O NormalFormIntMat (<mat>, <options>)
##
## This general operation for computation of various Normal Forms
## is probably the most efficient.
##
## Options bit values:
## \beginlist
## \item{0/1} Triangular Form / Smith Normal Form.
##
## \item{2} Reduce off diagonal entries.
##
## \item{4} Row Transformations.
##
## \item{8} Col Transformations.
##
## \item{16} Destructive (the original matrix may be destroyed)
## \endlist
##
## Compute a Triangular, Hermite or Smith form of the $n \times m$
## integer input matrix $A$. Optionally, compute $n \times n$ and
## $m \times m$ unimodular transforming matrices $Q, P$ which satisfy
## $QA = H$ or $QAP = S$.
## %The routines used are based on work by Arne Storjohann
## %and were implemented in {\GAP}~4 by A.~Storjohann and R.~Wainwright.
##
## Note option is a value ranging from 0 - 15 but not all options make sense
## (eg reducing off diagonal entries with SNF option selected already).
## If an option makes no sense it is ignored.
##
## Returns a record with component `normal' containing the
## computed normal form and optional components `rowtrans'
## and/or `coltrans' which hold the respective transformation matrix.
## Also in the record are components holding the sign of the determinant,
## signdet, and the Rank of the matrix, rank.
##
DeclareGlobalFunction("NormalFormIntMat");
#############################################################################
##
#A BaseIntMat( <mat> )
##
## If <mat> is a matrix with integral entries, this function returns a
## list of vectors that forms a basis of the integral row space of <mat>,
## i.e. of the set of integral linear combinations of the rows of <mat>.
##
DeclareAttribute( "BaseIntMat",
IsMatrix and IsCyclotomicCollColl );
#############################################################################
##
#A BaseIntersectionIntMats( <m>,<n> )
##
## If <m> and <n> are matrices with integral entries, this function returns a
## list of vectors that forms a basis of the intersection of the integral
## row spaces of <m> and <n>.
##
DeclareOperation( "BaseIntersectionIntMats",
[IsMatrix and IsCyclotomicCollColl,
IsMatrix and IsCyclotomicCollColl] );
#############################################################################
##
#A ComplementIntMat( <full>,<sub> )
##
## Let <full> be a list of integer vectors generating an Integral
## module <M> and <sub> a list of vectors defining a submodule <S>.
## This function computes a free basis for <M> that extends <S>.
## I.e., if the dimension of <S> is <n> it
## determines a basis $B=\{\underline{b}_1,\ldots,\underline{b}_m\}$ for <M>,
## as well as <n> integers $x_i$ such that the <n> vectors
## $\underline{s}_i:=x_i\cdot \underline{b}_i\}$ form a basis for <S>.
##
## It returns a record with the following
## components:
## \beginitems
## `complement' &
## the vectors $\underline{b}_{n+1}$ up to $\underline{b}_m$ (they
## generate a complement to <S>).
##
## `sub' &
## the vectors $s_i$ (a basis for <S>).
##
## `moduli' &
## the factors $x_i$.
##
## \enditems
DeclareOperation( "ComplementIntMat",
[IsMatrix and IsCyclotomicCollColl,
IsMatrix and IsCyclotomicCollColl] );
#############################################################################
##
#A NullspaceIntMat( <mat> )
##
## If <mat> is a matrix with integral entries, this function returns a
## list of vectors that forms a basis of the integral nullspace of <mat>, i.e.
## of those vectors in the nullspace of <mat> that have integral entries.
##
DeclareAttribute( "NullspaceIntMat",
IsMatrix and IsCyclotomicCollColl );
#############################################################################
##
#O SolutionIntMat( <mat>,<vec> )
##
## If <mat> is a matrix with integral entries and <vec> a vector with
## integral entries, this function returns a vector <x> with integer entries
## that is a solution of the equation `<x> * <mat> = <vec>'. It returns `fail'
## if no such vector exists.
##
DeclareOperation( "SolutionIntMat",
[IsMatrix and IsCyclotomicCollColl,
IsList and IsCyclotomicCollection]);
#############################################################################
##
#O SolutionNullspaceIntMat( <mat>,<vec> )
##
## This function returns a list of length two, its first entry being the
## result of a call to `SolutionIntMat' with same arguments, the second the
## result of `NullspaceIntMat' applied to the matrix <mat>.
## The calculation is performed faster than if two separate calls would be
## used.
##
DeclareOperation( "SolutionNullspaceIntMat",
[IsMatrix and IsCyclotomicCollColl,
IsList and IsCyclotomicCollection]);
#############################################################################
##
#A AbelianInvariantsOfList( <list> ) . . . . . abelian invariants of a list
##
## Given a list of positive integers, this routine returns a list of prime
## powers, such that the prime power factors of the entries in the list are
## returned in sorted form.
DeclareAttribute( "AbelianInvariantsOfList", IsCyclotomicCollection );
#############################################################################
##
#O DeterminantIntMat(<mat>)
##
## Computes the determinant of an integer matrix using the
## same strategy as `NormalFormIntMat' (see~"NormalFormIntMat").
## This method is
## faster in general for matrices greater than $20 \times 20$ but
## quite a lot slower for smaller matrices. It therefore passes
## the work to the more general `DeterminantMat' (see~"DeterminantMat")
## for these smaller matrices.
##
DeclareGlobalFunction("DeterminantIntMat");
# ``technical'' routines.
#############################################################################
##
#O SNFofREF (<mat>,<destroy>)
##
## Computes the Smith Normal Form of an integer matrix in row echelon
## (RE) form.
## If <destroy> is set to `true' <mat> will be changed in-place.
## Caveat -- No testing is done to ensure that <mat> is in RE form.
##
DeclareGlobalFunction("SNFofREF");
# #############################################################################
# ##
# #E matint.gd . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
# ##
|