File: methwhy.g

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (287 lines) | stat: -rw-r--r-- 8,661 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#############################################################################
##
#W  methwhy.g                  GAP tools                    Alexander Hulpke
##
#H  @(#)$Id: methwhy.g,v 4.22 2003/04/11 17:12:33 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file allows some fancy accesses to the method selection
##
Revision.methwhy_g :=
    "@(#)$Id: methwhy.g,v 4.22 2003/04/11 17:12:33 gap Exp $";

#############################################################################
##
#F  Print_Value(<val>)   
##  print a number factorized by SUM_FLAGS
##
BindGlobal("Print_Value_SFF",function(val)
  if val>SUM_FLAGS then
    Print(QuoInt(val,SUM_FLAGS),"*SUM_FLAGS");
    val:=val mod SUM_FLAGS;
    if val>0 then
      Print("+",val);
    fi;
  else
    Print(val);
  fi;
end);

#############################################################################
##
#F  ApplicableMethod( <opr>, <args> [, <printlevel> ] )
#F  ApplicableMethod( <opr>, <args>, <printlevel>, <nr> )
#F  ApplicableMethod( <opr>, <args>, <printlevel>, "all" )
#F  ApplicableMethodTypes( <opr>, <args> [, <printlevel> ] )
#F  ApplicableMethodTypes( <opr>, <args>, <printlevel>, <nr> )
#F  ApplicableMethodTypes( <opr>, <args>, <printlevel>, "all" )
##
##  In the first form, `ApplicableMethod' returns the method of highest rank
##  that is applicable for the operation <opr> with the arguments in the
##  list <args>.
##  The default <printlevel> is `0'.
##  If no method is applicable then `fail' is returned.
##
##  In the second form, if <nr> is a positive integer then
##  `ApplicableMethod' returns the <nr>-th applicable method for the
##  operation <opr> with the arguments in the list <args>, where the methods
##  are ordered according to descending rank.  If less than <nr> methods are
##  applicable then `fail' is returned.
##
##  If the fourth argument is the string `"all"' then `ApplicableMethod'
##  returns a list of all applicable methods for <opr> with arguments
##  <args>, ordered according to descending rank.
##
##  Depending on the integer value <printlevel>, additional information is
##  printed.  Admissible values and their meaning are as follows.
##
##  \beginlist
##  \item{0}
##      no information,
##  
##  \item{1}
##      information about the applicable method,
##  
##  \item{2}
##      also information about the not applicable methods of higher rank,
##  
##  \item{3}
##      also for each not applicable method the first reason why it is not
##      applicable,
##  
##  \item{4}
##      also for each not applicable method all reasons why it is not
##      applicable.
##
##  \item{6}
##      also the function body of the selected method(s)
##  \endlist
##  
##  When a method returned by `ApplicableMethod' is called then it returns
##  either the desired result or the string `TRY_NEXT_METHOD', which
##  corresponds to a call to `TryNextMethod' in the method and means that
##  the method selection would call the next applicable method.
##
##  *Note:* The kernel provides special treatment for the infix operations
##  `\\+', `\\-', `\\*', `\\/', `\\^', `\\mod' and `\\in'. For some kernel
##  objects (notably cyclotomic numbers, finite field elements and vectors
##  thereof) it calls kernel methods circumventing the method selection
##  mechanism. Therefore for these operations `ApplicableMethod' may return
##  a method which is not the kernel method actually used.
##
##  `ApplicableMethod' does not work for constructors (for example
##  `GeneralLinearGroupCons' is a constructor).
##
##  The function `ApplicableMethodTypes' takes the *types* or *filters* of
##  the arguments as argument (if only filters are given of course family
##  predicates cannot be tested).
BIND_GLOBAL("ApplicableMethodTypes",function(arg)
local oper,l,obj,skip,verbos,fams,flags,i,j,methods,flag,flag2,
      lent,nam,val,erg,has,need,isconstructor;
  if Length(arg)<2 or not IsList(arg[2]) or not IsFunction(arg[1]) then
    Error("usage: ApplicableMethodTypes(<opr>,<arglist>[,<verbosity>[,<nr>]])");
  fi;
  oper:=arg[1];
  isconstructor:=oper in CONSTRUCTORS;
  obj:=arg[2];
  if Length(arg)>2 then
    verbos:=arg[3];
  else
    verbos:=0;
  fi;
  if Length(arg)>3 then
    if IsInt( arg[4] ) then
      skip:=arg[4] - 1;
    else
      skip:= -1;
    fi;
    erg:=[];
  else
    skip:=0;
  fi;
  l:=Length(obj);

  # get families and filters
  flags:=[];
  fams:=[];
  for i in obj do
    if IsFilter(i) or IsIdenticalObj( i, IsObject ) then
      Add(flags,FLAGS_FILTER(i));
      Add(fams,fail);
    elif IsType(i) then
      Add(flags,i![2]);
      Add(fams,i![1]);
    else
      Error("wrong kind of argument");
    fi;
  od;

  if ForAny(fams,i->i=fail) then
    fams:=fail;
    Info(InfoWarning,1,"Family predicate cannot be tested");
  fi;

  methods:=METHODS_OPERATION(oper,l);
  if verbos > 0 then
    Print("#I  Searching Method for ",NameFunction(oper)," with ",l,
	  " arguments:\n");
  fi;
  lent:=4+l; #length of one entry
  if verbos > 0 then 
    Print("#I  Total: ", Length(methods)/lent," entries\n");
  fi;
  for i in [1..Length(methods)/lent] do
    nam:=methods[lent*(i-1)+l+4];
    val:=methods[lent*(i-1)+l+3];
    if verbos>1 then
      Print("#I  Method ",i,": ``",nam,"'', value: ");
      Print_Value_SFF(val);
      Print("\n");
    fi;
    flag:=true;
    j:=1;
    while j<=l and (flag or verbos>3) do
      if j=1 and isconstructor then
	flag2:=IS_SUBSET_FLAGS(methods[lent*(i-1)+1+j],flags[j]);
      else
	flag2:=IS_SUBSET_FLAGS(flags[j],methods[lent*(i-1)+1+j]);
      fi;
      flag:=flag and flag2;
      if flag2=false and verbos>2 then
	need:=NamesFilter(methods[lent*(i-1)+1+j]);
	if j=1 and isconstructor then
	  Print("#I   - ",Ordinal(j)," argument must be ",
		need,"\n");
	else
	  has:=NamesFilter(flags[j]);
	  Print("#I   - ",Ordinal(j)," argument needs ",
		Filtered(need,i->not i in has),"\n");
	fi;
      fi;
      j:=j+1;
    od;
    if flag then
      if fams=fail or CallFuncList(methods[lent*(i-1)+1],fams) then
	if verbos=1 then
	  Print("#I  Method ",i,": ``",nam,"'', value: ");
	  Print_Value_SFF(val);
	  Print("\n");
	fi;
	oper:=methods[lent*(i-1)+j+1];
	if verbos>5 then
	  Print("#I  Function Body:\n");
	  Print(oper);
	fi;
	if skip=0 then
	  return oper;
	else
	  Add(erg,oper);
	  skip:=skip-1;
	  if verbos>0 then
	    Print("#I  Skipped:\n");
	  fi;
        fi;
      elif verbos>2 then
        Print("#I   - bad family relations\n");
      fi;
    fi;
  od;
  if skip<0 then
    return erg;
  else
    return fail;
  fi;
end);

BIND_GLOBAL("ApplicableMethod",function(arg)
local i,l;
  if Length(arg)<2 or not IsList(arg[2]) or not IsFunction(arg[1]) then
    Error("usage: ApplicableMethod(<opr>,<arglist>[,<verbosity>[,<nr>]])");
  fi;
  l:=ShallowCopy(arg[2]);
  for i in [1..Length(l)] do
    if i=1 and arg[1] in CONSTRUCTORS then
      l[i]:=l[i];
    else
      l[i]:=TypeObj(l[i]);
  fi;
  od;
  arg[2]:=l;
  return CallFuncList(ApplicableMethodTypes,arg);
end);

#############################################################################
##
#F  ShowImpliedFilters( <filter> )
##
##  Displays information about the filters that may be implied by 
##  <filter>. They are given by their names. `ShowImpliedFilters' first
##  displays the names of all filters that are unconditionally implied by
##  <filter>. It then displays implications that require further filters to
##  be present (indicating by `+' the required further filters).
##  The function displays only first-level implications, implications that
##  follow in turn are not displayed (though {\GAP} will do these).
BIND_GLOBAL("ShowImpliedFilters",function(fil)
local flags,f,i,j,l,m,n;
  flags:=FLAGS_FILTER(fil);
  f:=Filtered(IMPLICATIONS,x->IS_SUBSET_FLAGS(x[2],flags));
  l:=[];
  m:=[];
  for i in f do
    n:=SUB_FLAGS(i[2],flags); # the additional requirements
    if SIZE_FLAGS(n)=0 then
      Add(l,i[1]);
    else
      Add(m,[n,i[1]]);
    fi;
  od;
  if Length(l)>0 then
    Print("Implies:\n");
    for i in l do
      for j in NamesFilter(i) do
	Print("   ",j,"\n");
      od;
    od;
  fi;
  if Length(m)>0 then
    Print("\n\nMay imply with:\n");
    for i in m do
      for j in NamesFilter(i[1]) do
        Print("+",j,"\n");
      od;
      for j in NamesFilter(i[2]) do
        Print("   ",j,"\n");
      od;
      Print("\n");
    od;
  fi;
end);


#############################################################################
##
#E  methwhy.g . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##