File: reesmat.gi

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (1348 lines) | stat: -rw-r--r-- 42,325 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348

#############################################################################
##
#W  reesmat.gi           GAP library         Andrew Solomon and Isabel Araujo
##
#H  @(#)$Id: reesmat.gi,v 4.21.2.3 2006/08/22 13:28:18 jamesm Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the implementation of Rees matrix semigroups.
##
Revision.reesmat_gi :=
    "@(#)$Id: reesmat.gi,v 4.21.2.3 2006/08/22 13:28:18 jamesm Exp $";

#JDM: make a NC version of ReesMatrixSemigroup and ReesZeroMatrixSemigroup

############################################################################
##
#R  IsReesMatrixSemigroupElementRep(<obj>)
##
##  A ReesMatrix element is a triple ( <i>, <s>, <lambda>)
##  <s> is an element of the underlying semigroup
##  <i>, <lambda> are indices.
##
##  This can be thought of as a matrix with zero everywhere
##  except for an occurrence of <s> at row <lambda> and column <i>
##
DeclareRepresentation("IsReesMatrixSemigroupElementRep",
	IsComponentObjectRep and IsAttributeStoringRep, rec());


#############################################################################
##
#F  ReesMatrixSemigroupElement( <R>, <i>, <a>, <lambda> )
##
##  Returns the element of the RM semigroup <R> corresponding to the
##  matrix with zero everywhere and <a> in row i and column x.
##
##  Notice that:
##  <a> must be in UnderlyingSemigroupOfReesMatrixSemigroup<R>
##  <i> must be in the range 1 .. RowsOfReesMatrixSemigroup(R)
##  <lambda> must be in the range 1 .. ColumnsOfReesMatrixSemigroup(R)
##
InstallGlobalFunction(ReesMatrixSemigroupElement,
function(R, i, a, lambda)
	local
				S, 				# The underlying semigroup
				elt;			# the newly created element

	# Check that R is a Rees Matrix semigroup
	if not IsReesMatrixSemigroup(R) then
		Error("ReesMatrixSemigroupElement - first argument must be a Rees Matrix semigroup");
	fi;

	S  := UnderlyingSemigroupOfReesMatrixSemigroup(R);
	# check that <a> is in the underlying semigroup
	if not a in S then
		 Error("ReesMatrixSemigroupElement - second argument must be in underlying semigroup");
        fi;

	# check that <i> and <lambda> are in the correct range
	if not (i in [1 .. RowsOfReesMatrixSemigroup(R)] and
		lambda in [1 .. ColumnsOfReesMatrixSemigroup(R)]) then
			Error("ReesMatrixSemigroupElement -  indices out of range");
	fi;

	# The arguments are sensible. Create the element.
	elt := Objectify(FamilyObj(R)!.wholeSemigroup!.eType, rec());
	SetUnderlyingElementOfReesMatrixSemigroupElement(elt, a);
	SetColumnIndexOfReesMatrixSemigroupElement(elt, lambda);
	SetRowIndexOfReesMatrixSemigroupElement(elt, i);
	return elt;
end);


#############################################################################
##
#F  ReesZeroMatrixSemigroupElement( <R>, <i>, <a>, <lambda> )
##
##  Returns the element of the RM semigroup <R> corresponding to the
##  matrix with zero everywhere and <a> in row i and column x.
##
##  Notice that:
##  <a> must be in UnderlyingSemigroupOfReesMatrixSemigroup<R>
##  <i> must be in the range 1 .. RowsOfReesMatrixSemigroup(R)
##  <lambda> must be in the range 1 .. ColumnsOfReesMatrixSemigroup(R)
##
InstallGlobalFunction(ReesZeroMatrixSemigroupElement,
function(R, i, a, lambda)
	local
				S, 				# The underlying semigroup
				elt;			# the newly created element

	# Check that R is a Rees Matrix semigroup
	if not IsReesZeroMatrixSemigroup(R) then
		Error("ReesZeroMatrixSemigroupElement - first argument must be a Rees Matrix semigroup");
	fi;

	S  := UnderlyingSemigroupOfReesZeroMatrixSemigroup(R);
	# check that <a> is in the underlying semigroup
	if not a in S then
		 Error("ReesZeroMatrixSemigroupElement - second argument must be in underlying semigroup");
  fi;

	# check that <i> and <lambda> are in the correct range
	if not (i in [1 .. RowsOfReesZeroMatrixSemigroup(R)] and
		lambda in [1 .. ColumnsOfReesZeroMatrixSemigroup(R)]) then
			Error("ReesZeroMatrixSemigroupElement -  indices out of range");
	fi;

	# The arguments are sensible. Create the element.
	if IsMultiplicativeZero(S,a) then
		# has the zero already been created?
		if HasMultiplicativeZero(R) then
			return MultiplicativeZero(R);
		else
			# need to get the elements family from the whole semigroup
			elt := Objectify(FamilyObj(R)!.wholeSemigroup!.eType, rec());
			SetReesZeroMatrixSemigroupElementIsZero(elt, true);
			SetMultiplicativeZero(R, elt);
			return elt;
		fi;
	else
    	elt := Objectify(FamilyObj(R)!.wholeSemigroup!.eType, rec());
		SetReesZeroMatrixSemigroupElementIsZero(elt, false);
    	SetUnderlyingElementOfReesZeroMatrixSemigroupElement(elt, a);
    	SetColumnIndexOfReesZeroMatrixSemigroupElement(elt, lambda);
    	SetRowIndexOfReesZeroMatrixSemigroupElement(elt, i);
    	return elt;
    fi;
end);


#############################################################################
##
#A  SandwichMatrixOfReesZeroMatrixSemigroup( <R> )
#A  RowsOfReesZeroMatrixSemigroup( <R> )
#A  ColumnsOfReesZeroMatrixSemigroup( <R> )
#A  UnderlyingSemigroupOfReesZeroMatrixSemigroup( <R> )
##
##  Install methods for subsemigroups.
##
InstallMethod(SandwichMatrixOfReesZeroMatrixSemigroup,
	"for a subsemigroup of a Rees zero matrix semigroup",
	[IsSubsemigroupReesZeroMatrixSemigroup],
	R->SandwichMatrixOfReesZeroMatrixSemigroup(FamilyObj(R)!.wholeSemigroup));

InstallMethod(RowsOfReesZeroMatrixSemigroup,
 "for a subsemigroup of a Rees zero matrix semigroup",
  [IsSubsemigroupReesZeroMatrixSemigroup],
  R->RowsOfReesZeroMatrixSemigroup(FamilyObj(R)!.wholeSemigroup));

InstallMethod(ColumnsOfReesZeroMatrixSemigroup,
 "for a subsemigroup of a Rees zero matrix semigroup",
  [IsSubsemigroupReesZeroMatrixSemigroup],
  R->ColumnsOfReesZeroMatrixSemigroup(FamilyObj(R)!.wholeSemigroup));

InstallMethod(UnderlyingSemigroupOfReesZeroMatrixSemigroup,
 "for a subsemigroup of a Rees zero matrix semigroup",
  [IsSubsemigroupReesZeroMatrixSemigroup],
  R->UnderlyingSemigroupOfReesZeroMatrixSemigroup(FamilyObj(R)!.wholeSemigroup));

#############################################################################
##
#A  SandwichMatrixOfReesMatrixSemigroup( <R> )
#A  RowsOfReesMatrixSemigroup( <R> )
#A  ColumnsOfReesMatrixSemigroup( <R> )
#A  UnderlyingSemigroupOfReesMatrixSemigroup( <R> )
##
##  Install methods for subsemigroups.
##
InstallMethod(SandwichMatrixOfReesMatrixSemigroup,
	"for a subsemigroup of a Rees matrix semigroup",
	[IsSubsemigroupReesMatrixSemigroup],
	R->SandwichMatrixOfReesMatrixSemigroup(FamilyObj(R)!.wholeSemigroup));

InstallMethod(RowsOfReesMatrixSemigroup,
 "for a subsemigroup of a Rees matrix semigroup",
  [IsSubsemigroupReesMatrixSemigroup],
  R->RowsOfReesMatrixSemigroup(FamilyObj(R)!.wholeSemigroup));

InstallMethod(ColumnsOfReesMatrixSemigroup,
 "for a subsemigroup of a Rees matrix semigroup",
  [IsSubsemigroupReesMatrixSemigroup],
  R->ColumnsOfReesMatrixSemigroup(FamilyObj(R)!.wholeSemigroup));

InstallMethod(UnderlyingSemigroupOfReesMatrixSemigroup,
 "for a subsemigroup of a Rees matrix semigroup",
  [IsSubsemigroupReesMatrixSemigroup],
  R->UnderlyingSemigroupOfReesMatrixSemigroup(FamilyObj(R)!.wholeSemigroup));


#############################################################################
##
#F  ReesMatrixSemigroup( <S>, <matrix> )
##
##  Returns the Rees matrix semigroup with multiplication defined by
##  <matrix> whose entries are in <S>.
##
##
InstallGlobalFunction(ReesMatrixSemigroup,
function(S, sandmat)
	local
				x, 				# a row of the matrix
				rowlen, 	# length of a row of the matrix
				Y, 				# a list of booleans
				eType,		# the type of an element
				fam,			# the family of an element
                z,              # the zero of S
				T; 				# The resulting Rees matrix Semigroup

	if not (IsSemigroup(S) and IsList(sandmat)) then
		Error("Usage: ReesMatrixSemigroup(<semigroup>, <sandwich matrix>)");
	fi;

	rowlen := Length(sandmat[1]); # the length of the first row
	for x in sandmat do
		if not (IsList(x) and (Length(x) = rowlen)) then
			Error("Usage: ReesMatrixSemigroup(<semigroup>, <sandwich matrix>)");

			Y := List(x, y->y in S);
			if false in Y then
				Error("ReesMatrixSemigroup: the matrix must be over <S>");
			fi;
		fi;
	od;

	# Now we can make the semigroup
	# Create a new family.
	fam := NewFamily( "FamilyElementsReesMatrixSemigroup",
		IsReesMatrixSemigroupElement );

	# Create the rees matrix semigroup.
	T := Objectify( NewType( CollectionsFamily( fam ), IsWholeFamily and IsReesMatrixSemigroup and IsAttributeStoringRep ), rec() );

	eType := NewType(fam,
		IsReesMatrixSemigroupElement and IsReesMatrixSemigroupElementRep,
		T); # The element type now stores the Semigroup in the Type Data

	# Store the element type in the semigroup
	T!.eType := eType;

	# Any subsemigroups given by generators will have this as
	# the whole semigroup
	FamilyObj( T )!.wholeSemigroup := T;

	SetSandwichMatrixOfReesMatrixSemigroup(T, sandmat);
	SetRowsOfReesMatrixSemigroup(T, rowlen);
	SetColumnsOfReesMatrixSemigroup(T, Length(sandmat));
	SetUnderlyingSemigroupOfReesMatrixSemigroup(T, S);

	return T;
end );


#############################################################################
##
#F  ReesZeroMatrixSemigroup( <S>, <matrix> )
##
##  Returns the rees 0-matrix semigroup with multiplication defined by
##  <matrix> whose entries are in <S>.
##
##
InstallGlobalFunction(ReesZeroMatrixSemigroup,
function(S, sandmat)
	local
				x, 				# a row of the matrix
				rowlen, 	# length of a row of the matrix
				Y, 				# a list of booleans
				eType,		# the type of an element
				fam,			# the family of an element
                z,              # the zero of S
				T; 				# The resulting Rees matrix Semigroup

	if not (IsSemigroup(S) and IsList(sandmat)) then
		Error("Usage: ReesZeroMatrixSemigroup(<semigroup>, <sandwich matrix>)");
	fi;

	rowlen := Length(sandmat[1]); # the length of the first row
	for x in sandmat do
		if not (IsList(x) and (Length(x) = rowlen)) then
			Error("Usage: ReesZeroMatrixSemigroup(<semigroup>, <sandwich matrix>)");

			Y := List(x, y->y in S);
			if false in Y then
				Error("ReesZeroMatrixSemigroup: the matrix must be over <S>");
			fi;
		fi;
	od;

	#JDM is this really necessary? 0 of rms not= 0 of S, should it be? 
	if not HasMultiplicativeZero(S) then 
           Error("must be defined over a semigroup with zero");
	fi;
	# Now we can make the semigroup
	# Create a new family.
	fam := NewFamily( "FamilyElementsReesZeroMatrixSemigroup",
		IsReesZeroMatrixSemigroupElement );

	# Create the rees matrix semigroup.
	T := Objectify( NewType( CollectionsFamily( fam ),
		IsWholeFamily and	IsReesZeroMatrixSemigroup and IsAttributeStoringRep ),
		rec() );

	eType := NewType(fam,
		IsReesZeroMatrixSemigroupElement and IsReesMatrixSemigroupElementRep,
		T); # The element type now stores the Semigroup in the Type Data

	# Store the element type in the semigroup
	T!.eType := eType;

	# Any subsemigroups given by generators will have this as
	# the whole semigroup
	FamilyObj( T )!.wholeSemigroup := T;

	SetSandwichMatrixOfReesZeroMatrixSemigroup(T, sandmat);
	SetRowsOfReesZeroMatrixSemigroup(T, rowlen);
	SetColumnsOfReesZeroMatrixSemigroup(T, Length(sandmat));
	SetUnderlyingSemigroupOfReesZeroMatrixSemigroup(T, S);

	if HasIsZeroGroup(S) and IsZeroGroup(S) then
		SetIsZeroSimpleSemigroup(T, true);
	fi;

    z:= MultiplicativeZero(S);
    if z = fail then
        Error("ReesZeroMatrixSemigroup - underlying semigroup must contain a zero element");
    fi;

    SetMultiplicativeZero(T, ReesZeroMatrixSemigroupElement(T,  1, z, 1));

	return T;
end );



############################################################################
##
#M  PrintObj( <rmelt> ) . . . . .  for an element of a Rees Matrix semigroup
##
InstallMethod( PrintObj, "for elements of Rees matrix semigroups",
[IsReesMatrixSemigroupElement],
function(x)
		Print("(",RowIndexOfReesMatrixSemigroupElement(x),","
                        ,UnderlyingElementOfReesMatrixSemigroupElement(x),
		       ",",ColumnIndexOfReesMatrixSemigroupElement(x), ")");
end);


############################################################################
##
#M  PrintObj( <rmelt> ) . . . for an element of a zero Rees Matrix semigroup
##
InstallMethod( PrintObj, "for elements of Rees zero matrix semigroups",
[IsReesZeroMatrixSemigroupElement],
function(x)
    if ReesZeroMatrixSemigroupElementIsZero(x) then
        Print("0");
    else
		Print("(",RowIndexOfReesZeroMatrixSemigroupElement(x),","
                        ,UnderlyingElementOfReesZeroMatrixSemigroupElement(x),
		       ",",ColumnIndexOfReesZeroMatrixSemigroupElement(x), ")");
    fi;
end);


############################################################################
##
#M  ViewObj( <R> ) . . . . . . . . . . . . . .  for a  Rees matrix semigroup
##
InstallMethod( ViewObj, "for Rees matrix semigroups",
    [ IsSubsemigroupReesMatrixSemigroup ],
function(R)
    if not HasIsWholeFamily(R) then
    	Print("Subsemigroup of Rees Matrix Semigroup over ",
	    	UnderlyingSemigroupOfReesMatrixSemigroup(R));
    else
    	Print("Rees Matrix Semigroup over ");
        ViewObj(UnderlyingSemigroupOfReesMatrixSemigroup(R));
    fi;
end);


############################################################################
##
#M  ViewObj( <R> ) . . . . . . . . . . . . for a  Rees zero matrix semigroup
##
InstallMethod( ViewObj, "for Rees zero matrix semigroups",
    [ IsSubsemigroupReesZeroMatrixSemigroup ],
function(R)
    if not HasIsWholeFamily(R) then
    	Print("Subsemigroup of Rees Zero Matrix Semigroup over ",
	    	UnderlyingSemigroupOfReesZeroMatrixSemigroup(R));
    else
    	Print("Rees Zero Matrix Semigroup over ",
	    	UnderlyingSemigroupOfReesZeroMatrixSemigroup(R));
    fi;
end);


############################################################################
##
#M  PrintObj( <R> ) . . . . . . . . . . . . . .  for a Rees matrix semigroup
##
InstallMethod( PrintObj, "for Rees matrix semigroups",
[IsSubsemigroupReesMatrixSemigroup],
function(R)
    if not HasIsWholeFamily(R) then
    	Print("Subsemigroup of Rees Matrix Semigroup over ",
	    	UnderlyingSemigroupOfReesMatrixSemigroup(R));
    else
    	Print("Rees Matrix Semigroup over ",
	    	UnderlyingSemigroupOfReesMatrixSemigroup(R));
    fi;
end);


############################################################################
##
#M  PrintObj( <R> ) . . . . . . . . . . . . for a Rees zero matrix semigroup
##
InstallMethod( PrintObj, "for Rees zero matrix semigroups",
[IsSubsemigroupReesZeroMatrixSemigroup],
function(R)
    if not HasIsWholeFamily(R) then
    	Print("Subsemigroup of Rees Zero Matrix Semigroup over ",
	    	UnderlyingSemigroupOfReesZeroMatrixSemigroup(R));
    else
    	Print("Rees Zero Matrix Semigroup over ",
	    	UnderlyingSemigroupOfReesZeroMatrixSemigroup(R));
    fi;
end);


############################################################################
##
#M  <rmelt> * <rmelt>
##
##  The product of two rees matrix semigroup elements (a;i,lambda)
##  and (b; j, mu) is (aM_{lambda,j}b; i, mu)
##  where M is the sandwich matrix
##
## JDM
InstallMethod(\*,
"for two elements of a Rees matrix semigroup",
IsIdenticalObj,
[IsReesMatrixSemigroupElement, IsReesMatrixSemigroupElement], 0,
function(x, y)
  local
				R,						# Rees Matrix semigroup
				M,						# sandwich matrix
				a, b, 				#Underlying elements of x and y resp
				i, j, 				# Row indices of x, y resp
				lambda, mu, 	#column indices of x, y resp
				c;						# The resulting element of the underlying semigroup

	R := DataType(TypeObj(x));


	a := UnderlyingElementOfReesMatrixSemigroupElement(x);
	b := UnderlyingElementOfReesMatrixSemigroupElement(y);

	i := RowIndexOfReesMatrixSemigroupElement(x);
	j := RowIndexOfReesMatrixSemigroupElement(y);

	lambda := ColumnIndexOfReesMatrixSemigroupElement(x);
	mu := ColumnIndexOfReesMatrixSemigroupElement(y);

	M := SandwichMatrixOfReesMatrixSemigroup(R);

	c := a*M[lambda][j]*b;

#JDM
#	return ReesMatrixSemigroupElement(R, c, i, mu);
#

	return ReesMatrixSemigroupElement(R, i, c, mu);
end);


############################################################################
##
#M  <rmelt> * <rmelt>
##
##  The product of two rees matrix semigroup elements (a;i,lambda)
##  and (b; j, mu) is (aM_{lambda,j}b; i, mu)
##  where M is the sandwich matrix
##
InstallMethod(\*,
"for two elements of a Rees zero matrix semigroup",
IsIdenticalObj,
[IsReesZeroMatrixSemigroupElement, IsReesZeroMatrixSemigroupElement], 0,
function(x, y)
  local
				R,						# Rees Matrix semigroup
				M,						# sandwich matrix
				S,						# underlying semigroup
				a, b, 				#Underlying elements of x and y resp
				i, j, 				# Row indices of x, y resp
				lambda, mu, 	#column indices of x, y resp
				c;						# The resulting element of the underlying semigroup

	R := DataType(TypeObj(x));

	if ReesZeroMatrixSemigroupElementIsZero(x) or
		ReesZeroMatrixSemigroupElementIsZero(y) then
		return MultiplicativeZero(R);
	fi;

	# Both are nonzero.

	a := UnderlyingElementOfReesZeroMatrixSemigroupElement(x);
	b := UnderlyingElementOfReesZeroMatrixSemigroupElement(y);

	i := RowIndexOfReesZeroMatrixSemigroupElement(x);
	j := RowIndexOfReesZeroMatrixSemigroupElement(y);

	lambda := ColumnIndexOfReesZeroMatrixSemigroupElement(x);
	mu := ColumnIndexOfReesZeroMatrixSemigroupElement(y);

	M := SandwichMatrixOfReesZeroMatrixSemigroup(R);

	S := UnderlyingSemigroupOfReesZeroMatrixSemigroup(R);

	c := a*M[lambda][j]*b;

	if IsMultiplicativeZero(S,c) then
		return  MultiplicativeZero(R);
	fi;

	#JDM
#	return ReesZeroMatrixSemigroupElement(R, c, i, mu);
#

	return ReesZeroMatrixSemigroupElement(R, i, c, mu);
end);


#############################################################################
##
#M  Size( <R> ) . . . . . . . . . . . . . . . . . for a Rees matrix semigroup
##
InstallMethod( Size,
    "for a Rees matrix semigroup",
    [ IsReesMatrixSemigroup ],
function(r)
  local s, m, n, sizeofr;

	s := UnderlyingSemigroupOfReesMatrixSemigroup( r );
	m := RowsOfReesMatrixSemigroup( r );
	n := ColumnsOfReesMatrixSemigroup( r );

	if Size(s) = infinity or m = infinity or n = infinity then
		return infinity;
	fi;

#	if HasMultiplicativeZero( r ) then
#		sizeofr := (Size( s ) - 1) * m * n + 1;
#	else
    sizeofr := Size( s ) * m * n;
#	fi;

   return sizeofr;
end);


#############################################################################
##
#M  Size( <R> ) . . . . . . . . . . . . . .  for a Rees zero matrix semigroup
##
InstallMethod( Size,
    "for a Rees zero matrix semigroup",
    [ IsReesZeroMatrixSemigroup ],
function(r)
  local s, m, n, sizeofr;

	s := UnderlyingSemigroupOfReesZeroMatrixSemigroup( r );
	m := RowsOfReesZeroMatrixSemigroup( r );
	n := ColumnsOfReesZeroMatrixSemigroup( r );

	if Size(s) = infinity or m = infinity or n = infinity then
		return infinity;
	fi;

	sizeofr := (Size( s ) - 1) * m * n + 1;

   return sizeofr;
end);


############################################################################
##
#M  <rmelt> < <rmelt>
##
##  "Lexicographic" ordering on element of rees matrix semigroups.
##  (a; i, lambda) < (b;j, mu) if
##  a < b; or
##  a = b and i < j; or
##  a = b and i = j and lambda < mu;
##
InstallMethod(\<,
"for two elements of a Rees matrix semigroup",
IsIdenticalObj,
[IsReesMatrixSemigroupElement, IsReesMatrixSemigroupElement], 0,
function(x, y)
  local
				a,b, 							# Underlying elements
				i, j, 						# row indices
				lambda, mu; 			# column indices

	# now we know that neither are zero
	a := UnderlyingElementOfReesMatrixSemigroupElement(x);
	b := UnderlyingElementOfReesMatrixSemigroupElement(y);

	i := RowIndexOfReesMatrixSemigroupElement(x);
	j := RowIndexOfReesMatrixSemigroupElement(y);

	lambda := ColumnIndexOfReesMatrixSemigroupElement(x);
	mu := ColumnIndexOfReesMatrixSemigroupElement(y);

	if (a < b) then
		return true;
	elif (a > b) then
		return false;
	elif (i < j) then
		return true;
	elif (i > j) then
		return false;
	elif (lambda < mu) then
		return true;
	else
		return false;
	fi;
end);


############################################################################
##
#M  <rmelt> < <rmelt>
##
##  "Lexicographic" ordering on element of rees matrix semigroups.
##  (a; i, lambda) < (b;j, mu) if
##  a < b; or
##  a = b and i < j; or
##  a = b and i = j and lambda < mu;
##
InstallMethod(\<,
"for two elements of a Rees zero matrix semigroup",
IsIdenticalObj,
[IsReesZeroMatrixSemigroupElement, IsReesZeroMatrixSemigroupElement], 0,
function(x, y)
  local
				a,b, 							# Underlying elements
				i, j, 						# row indices
				lambda, mu; 			# column indices



	if ReesZeroMatrixSemigroupElementIsZero(x) and
			ReesZeroMatrixSemigroupElementIsZero(y) then
		return false;
	elif ReesZeroMatrixSemigroupElementIsZero(x) then
		return true;
	elif ReesZeroMatrixSemigroupElementIsZero(y) then
		return false;
	fi;

	# now we know that neither are zero
	a := UnderlyingElementOfReesZeroMatrixSemigroupElement(x);
	b := UnderlyingElementOfReesZeroMatrixSemigroupElement(y);

	i := RowIndexOfReesZeroMatrixSemigroupElement(x);
	j := RowIndexOfReesZeroMatrixSemigroupElement(y);

	lambda := ColumnIndexOfReesZeroMatrixSemigroupElement(x);
	mu := ColumnIndexOfReesZeroMatrixSemigroupElement(y);

	if (a < b) then
		return true;
	elif (a > b) then
		return false;
	elif (i < j) then
		return true;
	elif (i > j) then
		return false;
	elif (lambda < mu) then
		return true;
	else
		return false;
	fi;
end);


############################################################################
##
#M  <rmelt> = <rmelt>
##
##  tests equality of two rees matrix semigroup elements
##
InstallMethod(\=, "for two elements of a Rees matrix semigroup",
IsIdenticalObj,
[IsReesMatrixSemigroupElement,
IsReesMatrixSemigroupElement],
function(a, b)

	return
			(RowIndexOfReesMatrixSemigroupElement(a) =
			RowIndexOfReesMatrixSemigroupElement(b))
		and
			(ColumnIndexOfReesMatrixSemigroupElement(a) =
			ColumnIndexOfReesMatrixSemigroupElement(b))
		and
			(UnderlyingElementOfReesMatrixSemigroupElement(a) =
			UnderlyingElementOfReesMatrixSemigroupElement(b));

end);


############################################################################
##
#M  <rmelt> = <rmelt>
##
##  tests equality of two rees matrix semigroup elements
##
InstallMethod(\=, "for two elements of a Rees zero matrix semigroup",
IsIdenticalObj,
[IsReesZeroMatrixSemigroupElement,
IsReesZeroMatrixSemigroupElement],
function(a, b)

	if ReesZeroMatrixSemigroupElementIsZero(a) and
			ReesZeroMatrixSemigroupElementIsZero(b) then
		return true;
	fi;

	if ReesZeroMatrixSemigroupElementIsZero(a) or
			ReesZeroMatrixSemigroupElementIsZero(b) then
		return false;
	fi;

	return
			(RowIndexOfReesZeroMatrixSemigroupElement(a) =
			RowIndexOfReesZeroMatrixSemigroupElement(b))
		and
			(ColumnIndexOfReesZeroMatrixSemigroupElement(a) =
			ColumnIndexOfReesZeroMatrixSemigroupElement(b))
		and
			(UnderlyingElementOfReesZeroMatrixSemigroupElement(a) =
			UnderlyingElementOfReesZeroMatrixSemigroupElement(b));

end);

#############################################################################
##
#F  ReesMatrixSemigroupEnumeratorGetElement( <enum>, <k> )
##
##  Returns a pair [T/F, elm], such that if <k> is less than or equal to
##  the size of the Rees Matrix Semigroup the first of the pair will be
##  true, and elm will be the element at the <k>th place.   Otherwise, the
##  first of the pair will be false.
##
BindGlobal("ReesMatrixSemigroupEnumeratorGetElement",
function(enum, k)
  local r,					# the Rees Matrix semigroup we are enumerating
				s,					# the underlying semigroup
								m,					# the number of rows of the matrix
				n,					# the number of columns of the matrix
				new;				# the new element found

  if k <= Length( enum!.currentlist ) then
    return [ true, enum!.currentlist[k] ];
  fi;

  r := UnderlyingCollection( enum );
  s := UnderlyingSemigroupOfReesMatrixSemigroup( r );
	m := RowsOfReesMatrixSemigroup( r );
	n := ColumnsOfReesMatrixSemigroup( r );

	# it keeps going until either it reaches position k or else
	# there are no more elements to be listed
	# There are no more elements to be listed if the iterator of s is exausted
	# and both the indexes of row and column are as big as they can be
  while Length( enum!.currentlist ) < k and
		not (IsDoneIterator(enum!.itunder) and enum!.column=n and enum!.row =m)   do

		if enum!.column < n then
			enum!.column := enum!.column + 1;
		elif enum!.row < m then
			enum!.row := enum!.row + 1;
			enum!.column := 1;
		else
			enum!.element := NextIterator( enum!.itunder );
			enum!.column := 1;
			enum!.row := 1;
		fi;

		new := ReesMatrixSemigroupElement( r, enum!.row, enum!.element,  enum!.column);
		Add( enum!.currentlist, new );
	od;

  if Length(enum!.currentlist) < k then
    return [false, 0];
  fi;

	return [true, enum!.currentlist[k]];

end);


#############################################################################
##
#F  ReesZeroMatrixSemigroupEnumeratorGetElement( <enum>, <k> )
##
##  Returns a pair [T/F, elm], such that if <k> is less than or equal to
##  the size of the Rees Matrix Semigroup the first of the pair will be
##  true, and elm will be the element at the <k>th place.   Otherwise, the
##  first of the pair will be false.
##
BindGlobal("ReesZeroMatrixSemigroupEnumeratorGetElement",
function(enum, k)
  local r,		# the Rees Matrix semigroup we are enumerating
	s,		# the underlying semigroup
	m,		# the number of rows of the matrix
	n,		# the number of columns of the matrix
	new;		# the new element found

  if k <= Length( enum!.currentlist ) then
    return [ true, enum!.currentlist[k] ];
  fi;

  r := UnderlyingCollection( enum );
  s := UnderlyingSemigroupOfReesZeroMatrixSemigroup( r );
	m := RowsOfReesZeroMatrixSemigroup( r );
	n := ColumnsOfReesZeroMatrixSemigroup( r );

	# it keeps going until either it reaches position k or else
	# there are no more elements to be listed
	# There are no more elements to be listed if the iterator of s is exausted
	# and both the indexes of row and column are as big as they can be
  while Length( enum!.currentlist ) < k and
		not (IsDoneIterator(enum!.itunder) and enum!.column=n and enum!.row =m) do

		if enum!.column < n then
			enum!.column := enum!.column + 1;
		elif enum!.row < m then
			enum!.row := enum!.row + 1;
			enum!.column := 1;
		else
			enum!.element := NextIterator( enum!.itunder );
      # here we have to check whether the element of s we
      # obtained is the zero or not - if it is the zero
      # of s it will generate only 0 and hence we should skip it
			if enum!.element=MultiplicativeZero(s) then
				if not(IsDoneIterator(enum!.itunder)) then
					enum!.element := NextIterator( enum!.itunder );
        fi;
      fi;
			enum!.column := 1;
			enum!.row := 1;
		fi;

		new := ReesZeroMatrixSemigroupElement( r, enum!.row, enum!.element,  enum!.column);
		Add( enum!.currentlist, new );
	od;

  if Length(enum!.currentlist) < k then
    return [false, 0];
  fi;

	return [true, enum!.currentlist[k]];

end);


#############################################################################
##
#M  \[\]( <E>, <n> )
##
##  Returns the <n>-th element of the Rees matrix semigroup enumerator <E>.
##
BindGlobal( "ElementNumber_ReesMatrixSemigroupEnumerator",
    function( enum, n )
  if IsBound(enum[n]) then
    return enum!.currentlist[n];
  else
    Error("Position out of range");
  fi;
end );


#############################################################################
##
#M  IsBound\[\]( <E>, <n> )
##
##  Returns true if the enumerator <E> has size at least <n>.
##
BindGlobal( "IsBound_ReesMatrixSemigroupEnumerator", function( enum, n )
    local pair;

    if IsReesMatrixSemigroup(UnderlyingCollection(enum)) then
      pair:= ReesMatrixSemigroupEnumeratorGetElement( enum, n);
    else
      pair:= ReesZeroMatrixSemigroupEnumeratorGetElement( enum, n);
    fi;
    return pair[1];
end );


############################################################################
##
#M  Enumerator( <R> ) . . . . . . . . . . . . .  for a Rees matrix semigroup
##
##  Elements are enumerated respecting their order, hence we get the
##  enumerator sorted.
#T but the enumerator does not store this, and the method is also not
#T installed for `EnumeratorSorted'!
#T (what about the method further down?)
##
InstallMethod( Enumerator, "for a Rees matrix semigroup",
    [ IsReesMatrixSemigroup ],
    function( r )
    local its;    # an iterator of the underlying semigroup

    # This method only works for the whole Rees matrix semigroup.
    if FamilyObj( r )!.wholeSemigroup <> r then
      TryNextMethod();
    fi;

    its:= Iterator( UnderlyingSemigroupOfReesMatrixSemigroup( r ) );

    return EnumeratorByFunctions( r, rec(
        ElementNumber := ElementNumber_ReesMatrixSemigroupEnumerator,
        NumberElement := NumberElement_SemigroupIdealEnumerator,
        IsBound\[\]   := IsBound_ReesMatrixSemigroupEnumerator,
        Length        := Length_SemigroupIdealEnumerator,
        Membership    := Membership_SemigroupIdealEnumerator,

        currentlist   := [],
        row           := 1,
        column        := 0,
        element       := NextIterator( its ),
        itunder       := its ) );
end );


############################################################################
##
#M  Enumerator( <R> ) . . . . . . . . . . . for a Rees zero matrix semigroup
##
InstallMethod( Enumerator, "for a Rees zero matrix semigroup",
    [ IsReesZeroMatrixSemigroup ],
    function( r )
    local s,    # the underlying semigroup
          its,  # the iterator of the semigroup s
          x,    # the first element of s
          enum;

    s := UnderlyingSemigroupOfReesZeroMatrixSemigroup( r );
    its := Iterator( s );
    x := NextIterator( its );

    enum:= EnumeratorByFunctions( r, rec(
        ElementNumber := ElementNumber_ReesMatrixSemigroupEnumerator,
        NumberElement := NumberElement_SemigroupIdealEnumerator,
        IsBound\[\]   := IsBound_ReesMatrixSemigroupEnumerator,
        Length        := Length_SemigroupIdealEnumerator,
        Membership    := Membership_SemigroupIdealEnumerator,

        currentlist   := [ MultiplicativeZero( r ) ],
        row           := 1,
        column        := 0,
        element       := x,
        itunder       := its ) );

    # recall that r has a zero iff s has a zero
    # and if the zero of s is the first element of s
    # we should move to the next one
    if x = MultiplicativeZero( s ) then
      if not IsDoneIterator( its ) then
        enum!.element:= NextIterator( its );
      fi;
    fi;

    return enum;
end );


#JDM: the functions from here on down need to be rechecked/written.

############################################################################
##
#F  BuildIsomorphismReesMatrixSemigroupWithMap( <S>, <groupHclass>, <phi> )
##
##	for s simple semigroup <S>.
##	for a 0-simple semigroup <S>.
##
BindGlobal( "BuildIsomorphismReesMatrixSemigroupWithMap",
function( s1,groupHclass, phi)

	local	e,s,iso,								# a representative of H
				lclassesrep,			# list of representatives of the L classes
				rclassesrep,			# list of representatives of the R classes
				R,L,							# greens R and L relations on s
				r,l,h,						# R, L and H classes of e
				m,n,							# length of lclassesrep and rclassesrep, resp
				matrix,						# the matrix
				iszerosimple,			# boolean to ensure we are in the right case
				i,j,p,
				semi,							# the underlying semigroup of the Rees Matrix smg
				reesfun,
				reessmg;					# the Rees Matrix Semigroup built from s

        iso := IsomorphismTransformationSemigroup(s1);
        s := Range(iso);

	if not( IsSimpleSemigroup(s) or IsZeroSimpleSemigroup(s) ) then
		Error( "Can only build isomorphism for simple or 0-simple semigroups");
	fi;

	if IsSimpleSemigroup(s) then
		iszerosimple:= false;
	else
		iszerosimple:= true;
	fi;

	# First we build the Rees Matrix Semigroup

	# we can get the underlying semigroup, from the mapping phi
	# it is going to be exactly the Source of phi
	semi := Source( phi );

	# now we need to build the matrix

	# pick a representative of h
	e := Image(iso, groupHclass );
	# now we have to fix an element in each of the H classes in the R class of e
	# notice that this will also be a list of l classes rep for all l classes of s
	lclassesrep := [];
	R := GreensRRelation( s );
        r := GreensRClassOfElement(s,e);
	#r := EquivalenceClassOfElementNC( R, e);
	for h in GreensHClasses(r) do
		AddSet( lclassesrep, PreImage(iso,Representative(h)) );
	od;

	# do the same for the H classes in the L class of e
  rclassesrep := [];
  L := GreensLRelation( s );
  l := GreensLClassOfElement(s,e);
  #l := EquivalenceClassOfElementNC( L, e);
  for h in GreensHClasses(l) do
    AddSet( rclassesrep, PreImage(iso,Representative(h)) );
  od;
 

	# now build the matrix
	# it is going to be a m times n matrix, where m is the length of el
	# and m is the length of er
	m := Length( lclassesrep );
	n := Length( rclassesrep );

	# We need a matrix with entries in semi
	# (ie, entries in the perm group isom to h or perm group with zero adjoined)
	# From the theory we know that in the simple case the product of an element from
	# the list  rclassesrep with one formn lclassesrep will be in the H class of e
	# and in the zero simple case it will be in that H class or else is zero
	# so the following makes sense
	matrix := [];
	for i in [1..m] do
		matrix[ i ] := [];
		for j in [1..n] do
			# the entries of the matrix corresponds to the products lclassesrep[j]*rclassesrep[i]
			# in the permgroup (or zero perm group in zero simple case)
			# so they will be the unique preimage under phi of lclassesrep[j]*rclassesrep[i]
			p := ImagesRepresentative( InverseGeneralMapping(phi), Image(iso,lclassesrep[i]*rclassesrep[j]));
			Add( matrix[ i ], p );
		od;
	od;

	# we have all the ingredients to build the ReesMatrix semigroup

	if iszerosimple then
		reessmg:= ReesZeroMatrixSemigroup( semi, matrix);
	else
		reessmg:= ReesMatrixSemigroup( semi, matrix);
	fi;

	# now we need to build the isomorphism

	reesfun := function( x )
		local el,j,i,y;

		if iszerosimple and ReesZeroMatrixSemigroupElementIsZero( x ) then
			return MultiplicativeZero( s1 );
		fi;

		i := RowIndexOfReesMatrixSemigroupElement( x );
		j := ColumnIndexOfReesMatrixSemigroupElement( x );
		y := ImagesRepresentative( phi, UnderlyingElementOfReesMatrixSemigroupElement(x));
		el := rclassesrep[ i ] * y * lclassesrep[ j ];

		return el;
	end;

	return MagmaHomomorphismByFunctionNC( reessmg, s1, reesfun);
end);


############################################################################
##
#M  IsomorphismReesMatrixSemigroup( <S> )
##
##  for a finite simple semigroup <S>.
##  Returns an isomorphism from <S> to an isomorphic Rees Matrix Semigroup
##
InstallMethod( IsomorphismReesMatrixSemigroup,
  "for a finite simple semigroup",
  [IsSimpleSemigroup],
function(s1)
	local	it,s,iso,		# iterator od the semigroup
				d,						# the unique D class of the semigroup
				groupHclass,	# group H class of d
				phi,					# isomorphism from groupHclass to a perm group
				injection_perm_group;
                iso := IsomorphismTransformationSemigroup(s1);
                s := Range(IsomorphismTransformationSemigroup(s1));
	#############################################
	# for a simple semigroup and a group H class.
	# Returns the injection from the perm group isomorphic to H, to S.
	injection_perm_group:=function( s, h)
		local	phi,				# the isomorphim from H to the perm group
					geninvphi,	# the general mapping that is the inverse of phi
					invfun,			# the function taking each el of g to the its preimage in s
					invphi,			# the actual inverse of phi
					g;					# the perm group

		# first we get the mapping, which we know is a bijection, from H to G
		phi := IsomorphismPermGroup( h );
		# and get g, the perm group
		g := Range( phi );

		# then we build its inverse as a general mapping
		geninvphi := InverseGeneralMapping( phi );

		# then we build the inverse of phi, by mapping each element
		# of g to its image representative (notice that since we know that
		# phi is bijective, there is no choice for the image rep,
		# and everything is fixed and well defined
		invfun := x -> ImagesRepresentative( geninvphi, x);
		invphi := MappingByFunction( g, s, invfun);

		return invphi;

	end;

	########################################
	# the actual method now

	# this only works for finite semigroups
	if not (IsFinite( s )) then
		TryNextMethod();
	fi;

	# first get a group H class
	it := Iterator( s );

        d := GreensDClassOfElement(s,NextIterator(it));

        #d := EquivalenceClassOfElementNC( GreensDRelation( s ), NextIterator( it ) );
	groupHclass := GroupHClassOfGreensDClass( d );

	# the a mapping from the perm group (to which groupHclass is isomorphic) to s
	phi := injection_perm_group( s, groupHclass);

	return BuildIsomorphismReesMatrixSemigroupWithMap( s1,
               PreImage(iso,Representative(groupHclass)), phi);
end);


############################################################################
##
#M  IsomorphismReesMatrixSemigroup( <S> )
##
##  for a finite 0-simple semigroup <S>.
##  Returns an isomorphism from <S> to an isomorphic Rees Matrix Semigroup
##
InstallMethod( IsomorphismReesMatrixSemigroup,
  "for a finite 0-simple semigroup",
  [IsZeroSimpleSemigroup],
function(s1)
  local e,s,iso,						# an element of the semigroup
        it,           # iterator od the semigroup
        d,            # the unique D class of the semigroup
        groupHclass,  # group H class of d
        phi,          # the mapping from permgroup with zero to s
				injection_zero_perm_group;

        iso := IsomorphismTransformationSemigroup(s1);
        s := Range(IsomorphismTransformationSemigroup(s1));
	###########################################################
	# for a zero simple semigroup and a non zero group H class.
	# Returns the injection from the perm group with zero adjoined
	# to S, which image is H together with the MultiplicativeZero of s
	injection_zero_perm_group:=function( s, h)
		  local phi,        # the isomorphim from H to the perm group
						csi,				# the injection from g to zero g
	    	    geninvphi,  # the general mapping that is the inverse of phi
						geninvcsi,	# the general mapping that is the inverse of csi
      	  	inj, 		    # the actual mapping we are looking for
						zerog,			# g with a zero adjoined
						fun,				#	the function that will give rise to the mapping we want
    	    	g;          # the perm group

	  # first we get the mapping, which we know is a bijection, from H to G
	  phi := IsomorphismPermGroup( h );
		# and the perm group
		g := Range( phi );

		# the the mapping, an injection, from G to G with zero adjoined
  	csi := InjectionZeroMagma( g );
 	 	# and the perm group with zero adjoined
  	zerog:= Range( csi );

		# so we want to build a mapping from zero g to s

  	# first we build the inverse of phi as a general mapping
	  geninvphi := InverseGeneralMapping( phi );
		# and similarly the inverse of csi as a general mapping
		geninvcsi := InverseGeneralMapping( csi );

		# now we build the mapping, using the follwoing function
		fun := function( x )
			local y;

			# the zero of zerog is mapped to the zero of s
			if x = MultiplicativeZero( zerog ) then
				return MultiplicativeZero( s );
			fi;
			y := ImagesRepresentative( geninvcsi, x );

			# other elements have a unique preimage in g
			# and that obatined pre image has a unique premiage in h, therefore in s
			return ImagesRepresentative( geninvphi, y );
		end;

  	inj:= MappingByFunction( zerog, s, fun);

 		 return inj;

	end;

	#######################################
	# the actual method now

	# this only works for finite semigroups
	if not(IsFinite( s )) then
		TryNextMethod();
	fi;

  # first get a nonzero group H class
  it := Iterator( s );

	# there are at least two elements in s, since s is 0-simple
	# so find a non zero element and fix its d class
	e := NextIterator( it );
	if e=MultiplicativeZero( s ) then
		e := NextIterator( it );
	fi;
  d:= GreensDClassOfElement(s,e);
  #d := EquivalenceClassOfElementNC( GreensDRelation( s ), e);

	# hence get a non zero h class of the semigroup
  groupHclass := GroupHClassOfGreensDClass( d );

	# groupHclass is isomorphic to a permgroup
	# We now get the mapping from the perm group with zero adjoined
	# to the semigroup s
	phi := injection_zero_perm_group( s, groupHclass);

  return BuildIsomorphismReesMatrixSemigroupWithMap( s1,
         PreImage(iso,Representative(groupHclass)), phi);

end);


############################################################################
##
#M  AssociatedReesMatrixSemigroupOfDClass( <D> )
##


InstallMethod(AssociatedReesMatrixSemigroupOfDClass, "for d class",
    [IsGreensDClass],
function( D )
    local h, phi, g, gz, fun, map, r, l, rreps, lreps, n, m, mat, psi;

    if not IsFinite(AssociatedSemigroup(D)) then
        TryNextMethod();
    fi;

    if not IsRegularDClass(D) then
        Error("D class must be regular");
    fi;

    h:= GroupHClassOfGreensDClass(D);

    # find the isomorphic perm group.
    phi:=IsomorphismPermGroup(h);
    g:= Range(phi);
    psi:=InjectionZeroMagma(g);
    gz:= Range(psi);

    # build the function
    fun:= function(x)
        if not x in h then
            return MultiplicativeZero(gz);
        fi;
        return (x^phi)^psi;
    end;

    map:= MappingByFunction(AssociatedSemigroup(D), gz, fun);

    r:= EquivalenceClassOfElement(GreensRRelation(AssociatedSemigroup(D)),
        Representative(h));
    l:= EquivalenceClassOfElement(GreensLRelation(AssociatedSemigroup(D)),
        Representative(h));

    rreps:= List(GreensHClasses(l), Representative);
    lreps:= List(GreensHClasses(r), Representative);

    n:= Length(rreps);
    m:= Length(lreps);

    mat:= List([1..m], x->List([1..n], y->(lreps[x]*rreps[y])^map));

    if ForAll(mat, x->ForAll(x, y -> y <> MultiplicativeZero(gz))) then
        return ReesMatrixSemigroup(g, mat);
    else
        return ReesZeroMatrixSemigroup(gz, mat);
    fi;
end);


#############################################################################
##
#E