1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
#############################################################################
##
#W ring.gd GAP library Thomas Breuer
##
#H @(#)$Id: ring.gd,v 4.54.2.2 2005/11/26 14:02:14 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for rings.
##
Revision.ring_gd :=
"@(#)$Id: ring.gd,v 4.54.2.2 2005/11/26 14:02:14 gap Exp $";
#############################################################################
##
#P IsNearRing( <R> )
##
## A *near-ring* in {\GAP} is a near-additive group
## (see~"IsNearAdditiveGroup") that is also a semigroup (see~"IsSemigroup"),
## such that addition `+' and multiplication `\*' are right distributive
## (see~"IsRDistributive").
## Any associative ring (see~"IsRing") is also a near-ring.
##
DeclareSynonymAttr( "IsNearRing",
IsNearAdditiveGroup and IsMagma and IsRDistributive and IsAssociative );
#############################################################################
##
#P IsNearRingWithOne( <R> )
##
## A *near-ring-with-one* in {\GAP} is a near-ring (see~"IsNearRing")
## that is also a magma-with-one (see~"IsMagmaWithOne").
##
## Note that the identity and the zero of a near-ring-with-one need *not* be
## distinct.
## This means that a near-ring that consists only of its zero element can be
## regarded as a near-ring-with-one.
##
DeclareSynonymAttr( "IsNearRingWithOne", IsNearRing and IsMagmaWithOne );
#############################################################################
##
#A AsNearRing( <C> )
##
## If the elements in the collection <C> form a near-ring then `AsNearRing'
## returns this near-ring, otherwise `fail' is returned.
##
DeclareAttribute( "AsNearRing", IsNearRingElementCollection );
#############################################################################
##
#P IsRing( <R> )
##
## A *ring* in {\GAP} is an additive group (see~"IsAdditiveGroup")
## that is also a magma (see~"IsMagma"),
## such that addition `+' and multiplication `\*' are distributive.
##
## The multiplication need *not* be associative (see~"IsAssociative").
## For example, a Lie algebra (see~"Lie Algebras") is regarded as a
## ring in {\GAP}.
##
DeclareSynonymAttr( "IsRing",
IsAdditiveGroup and IsMagma and IsDistributive );
#############################################################################
##
#P IsRingWithOne( <R> )
##
## A *ring-with-one* in {\GAP} is a ring (see~"IsRing")
## that is also a magma-with-one (see~"IsMagmaWithOne").
##
## Note that the identity and the zero of a ring-with-one need *not* be
## distinct.
## This means that a ring that consists only of its zero element can be
## regarded as a ring-with-one.
#T shall we force *every* trivial ring to be a ring-with-one
#T by installing an implication?
##
## This is especially useful in the case of finitely presented rings,
## in the sense that each factor of a ring-with-one is again a
## ring-with-one.
##
DeclareSynonymAttr( "IsRingWithOne", IsRing and IsMagmaWithOne );
#############################################################################
##
#A AsRing( <C> )
##
## If the elements in the collection <C> form a ring then `AsRing' returns
## this ring, otherwise `fail' is returned.
##
DeclareAttribute( "AsRing", IsRingElementCollection );
#############################################################################
##
#A GeneratorsOfRing( <R> )
##
## `GeneratorsOfRing' returns a list of elements such that the ring <R> is
## the closure of these elements under addition, multiplication,
## and taking additive inverses.
##
DeclareAttribute( "GeneratorsOfRing", IsRing );
#############################################################################
##
#A GeneratorsOfRingWithOne( <R> )
##
## `GeneratorsOfRingWithOne' returns a list of elements
## such that the ring <R> is the closure of these elements
## under addition, multiplication, taking additive inverses, and taking
## the identity element `One( <R> )'.
##
## <R> itself need *not* be known to be a ring-with-one.
##
DeclareAttribute( "GeneratorsOfRingWithOne", IsRingWithOne );
#############################################################################
##
#O RingByGenerators( <C> ) . . . . . . . ring gener. by elements in a coll.
##
## `RingByGenerators' returns the ring generated by the elements in the
## collection <C>,
## i.~e., the closure of <C> under addition, multiplication,
## and taking additive inverses.
##
DeclareOperation( "RingByGenerators", [ IsCollection ] );
#############################################################################
##
#O DefaultRingByGenerators( <coll> ) . . . . default ring containing a coll.
##
DeclareOperation( "DefaultRingByGenerators", [ IsCollection ] );
#############################################################################
##
#F Ring( <r> ,<s>, ... ) . . . . . . . . . . ring generated by a collection
#F Ring( <coll> ) . . . . . . . . . . . . . . ring generated by a collection
##
## In the first form `Ring' returns the smallest ring that
## contains all the elements <r>, <s>... etc.
## In the second form `Ring' returns the smallest ring that
## contains all the elements in the collection <coll>.
## If any element is not an element of a ring or if the elements lie in no
## common ring an error is raised.
##
## `Ring' differs from `DefaultRing' (see~"DefaultRing") in that it returns
## the smallest ring in which the elements lie, while `DefaultRing' may
## return a larger ring if that makes sense.
##
DeclareGlobalFunction( "Ring" );
#############################################################################
##
#O RingWithOneByGenerators( <coll> )
##
## `RingWithOneByGenerators' returns the ring-with-one generated by the
## elements in the collection <coll>, i.~e., the closure of <coll> under
## addition, multiplication, taking additive inverses,
## and taking the identity of an element.
##
DeclareOperation( "RingWithOneByGenerators", [ IsCollection ] );
#############################################################################
##
#F RingWithOne( <r>, <s>, ... ) . . ring-with-one generated by a collection
#F RingWithOne( <C> ) . . . . . . . ring-with-one generated by a collection
##
## In the first form `RingWithOne' returns the smallest ring with one that
## contains all the elements <r>, <s>... etc.
## In the second form `RingWithOne' returns the smallest ring with one that
## contains all the elements in the collection <C>.
## If any element is not an element of a ring or if the elements lie in no
## common ring an error is raised.
##
DeclareGlobalFunction( "RingWithOne" );
#############################################################################
##
#F DefaultRing( <r> ,<s>, ... ) . . . default ring containing a collection
#F DefaultRing( <coll> ) . . . . . . . default ring containing a collection
##
## In the first form `DefaultRing' returns a ring that contains
## all the elements <r>, <s>, ... etc.
## In the second form `DefaultRing' returns a ring that contains
## all the elements in the collection <coll>.
## If any element is not an element of a ring or if the elements lie in no
## common ring an error is raised.
##
## The ring returned by `DefaultRing' need not be the smallest ring in which
## the elements lie.
## For example for elements from cyclotomic fields,
## `DefaultRing' may return the ring of integers of the smallest cyclotomic
## field in which the elements lie, which need not be the smallest ring
## overall, because the elements may in fact lie in a smaller number field
## which is itself not a cyclotomic field.
##
## (For the exact definition of the default ring of a certain type of
## elements, look at the corresponding method installation.)
##
## `DefaultRing' is used by the ring functions like `Quotient', `IsPrime',
## `Factors', or `Gcd' if no explicit ring is given.
##
## `Ring' (see~"Ring") differs from `DefaultRing' in that it returns the
## smallest ring in which the elements lie, while `DefaultRing' may return
## a larger ring if that makes sense.
##
DeclareGlobalFunction( "DefaultRing" );
#############################################################################
##
#F Subring( <R>, <gens> ) . . . . . . . . subring of <R> generated by <gens>
#F SubringNC( <R>, <gens> ) . . . . . . . subring of <R> generated by <gens>
##
## returns the ring with parent <R> generated by the elements in
## <gens>. When the second form, `SubringNC' is used, it is *not* checked
## whether all elements in <gens> lie in <R>.
##
DeclareGlobalFunction( "Subring" );
DeclareGlobalFunction( "SubringNC" );
#############################################################################
##
#F SubringWithOne( <R>, <gens> ) . subring-with-one of <R> gen. by <gens>
#F SubringWithOneNC( <R>, <gens> ) . subring-with-one of <R> gen. by <gens>
##
## returns the ring with one with parent <R> generated by the elements in
## <gens>. When the second form, `SubringNC' is used, it is *not* checked
## whether all elements in <gens> lie in <R>.
##
DeclareGlobalFunction( "SubringWithOne" );
DeclareGlobalFunction( "SubringWithOneNC" );
#############################################################################
##
#O ClosureRing( <R>, <r> )
#O ClosureRing( <R>, <S> )
##
## For a ring <R> and either an element <r> of its elements family or a ring
## <S>, `ClosureRing' returns the ring generated by both arguments.
##
DeclareOperation( "ClosureRing", [ IsRing, IsObject ] );
#############################################################################
##
#C IsUniqueFactorizationRing( <R> )
##
## A ring <R> is called a *unique factorization ring* if it is an integral
## ring (see~"IsIntegralRing"),
## and every element has a unique factorization into irreducible elements,
## i.e., a unique representation as product of irreducibles (see
## "IsIrreducibleRingElement").
## Unique in this context means unique up to permutations of the factors and
## up to multiplication of the factors by units (see~"Units").
##
## Mathematically, a field should therefore also be a unique factorization
## ring, since every element is a unit. In {\GAP}, however, at least at present
## fields do not lie in the filter `IsUniqueFactorizationRing'
## (see~"IsUniqueFactorizationRing"), since
## Operations such as `Factors', `Gcd', `StandardAssociate' and so on do
## not apply to fields (the results would be trivial, and not
## especially useful) and Methods which require their arguments to
## lie in `IsUniqueFactorizationRing' expect these Operations to work.
##
## (Note that we cannot install a subset maintained method for this category
## since the factorization of an element needs not exist in a subring.
## As an example, consider the subring $4 \N + 1$ of the ring $4 \Z + 1$;
## in the subring, the element $3 \cdot 3 \cdot 11 \cdot 7$ has the two
## factorizations $33 \cdot 21 = 9 \cdot 77$, but in the large ring there
## is the unique factorization $(-3) \cdot (-3) \cdot (-11) \cdot (-7)$,
## and it is easy to see that every element in $4 \Z + 1$ has a unique
## factorization.)
##
DeclareCategory( "IsUniqueFactorizationRing", IsRing );
#############################################################################
##
#C IsEuclideanRing( <R> )
##
## A ring $R$ is called a Euclidean ring if it is an integral ring and
## there exists a function $\delta$, called the Euclidean degree, from
## $R-\{0_R\}$ to the nonnegative integers, such that for every pair $r \in
## R$ and $s \in R-\{0_R\}$ there exists an element $q$ such that either
## $r - q s = 0_R$ or $\delta(r - q s) \< \delta( s )$. In {\GAP} the
## Euclidean degree $\delta$ is implicitly built into an ring and cannot be
## changed. The existence of this division with remainder implies that the
## Euclidean algorithm can be applied to compute a greatest common divisor
## of two elements, which in turn implies that $R$ is a unique
## factorization ring.
##
#T more general: new category ``valuated domain''?
##
DeclareCategory( "IsEuclideanRing",
IsRingWithOne and IsUniqueFactorizationRing );
#############################################################################
##
#P IsAnticommutative( <R> )
##
## is `true' if the relation $a * b = - b * a$
## holds for all elements $a$, $b$ in the ring <R>,
## and `false' otherwise.
##
DeclareProperty( "IsAnticommutative", IsRing );
InstallSubsetMaintenance( IsAnticommutative,
IsRing and IsAnticommutative, IsRing );
InstallFactorMaintenance( IsAnticommutative,
IsRing and IsAnticommutative, IsObject, IsRing );
#############################################################################
##
#P IsIntegralRing( <R> )
##
## A ring-with-one <R> is integral if it is commutative, contains no
## nontrivial zero divisors,
## and if its identity is distinct from its zero.
##
DeclareProperty( "IsIntegralRing", IsRing );
InstallSubsetMaintenance( IsIntegralRing,
IsRing and IsIntegralRing, IsRing and IsNonTrivial );
InstallTrueMethod( IsIntegralRing,
IsRing and IsMagmaWithInversesIfNonzero and IsNonTrivial );
InstallTrueMethod( IsIntegralRing,
IsUniqueFactorizationRing and IsNonTrivial );
#############################################################################
##
#P IsJacobianRing( <R> )
##
## is `true' if the Jacobi identity holds in <R>, and `false' otherwise.
## The Jacobi identity means that $x \* (y \* z) + z \* (x \* y) +
## y \* (z \* x)$
## is the zero element of <R>, for all elements $x$, $y$, $z$ in <R>.
##
DeclareProperty( "IsJacobianRing", IsRing );
InstallTrueMethod( IsJacobianRing,
IsJacobianElementCollection and IsRing );
InstallSubsetMaintenance( IsJacobianRing,
IsRing and IsJacobianRing, IsRing );
InstallFactorMaintenance( IsJacobianRing,
IsRing and IsJacobianRing, IsObject, IsRing );
#############################################################################
##
#P IsZeroSquaredRing( <R> )
##
## is `true' if $a * a$ is the zero element of the ring <R>
## for all $a$ in <R>, and `false' otherwise.
##
DeclareProperty( "IsZeroSquaredRing", IsRing );
InstallTrueMethod( IsAnticommutative, IsRing and IsZeroSquaredRing );
InstallTrueMethod( IsZeroSquaredRing,
IsZeroSquaredElementCollection and IsRing );
InstallSubsetMaintenance( IsZeroSquaredRing,
IsRing and IsZeroSquaredRing, IsRing );
InstallFactorMaintenance( IsZeroSquaredRing,
IsRing and IsZeroSquaredRing, IsObject, IsRing );
#############################################################################
##
#P IsZeroMultiplicationRing( <R> )
##
## is `true' if $a * b$ is the zero element of the ring <R>
## for all $a, b$ in <R>, and `false' otherwise.
##
DeclareProperty( "IsZeroMultiplicationRing", IsRing );
InstallTrueMethod( IsZeroSquaredRing, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsAssociative, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsCommutative, IsRing and IsZeroMultiplicationRing );
# The implication to `IsAnticommutative' follows from `IsZeroSquaredRing'.
InstallSubsetMaintenance( IsZeroMultiplicationRing,
IsRing and IsZeroMultiplicationRing, IsRing );
InstallFactorMaintenance( IsZeroMultiplicationRing,
IsRing and IsZeroMultiplicationRing, IsObject, IsRing );
#############################################################################
##
#A Units( <R> )
##
## `Units' returns the group of units of the ring <R>.
## This may either be returned as a list or as a group.
##
## An element $r$ is called a *unit* of a ring $R$, if $r$ has an inverse in
## $R$.
## It is easy to see that the set of units forms a multiplicative group.
##
DeclareAttribute( "Units", IsRing );
#############################################################################
##
#O Factors( <R>, <r> )
#O Factors( <r> )
##
## In the first form `Factors' returns the factorization of the ring
## element <r> in the ring <R>.
## In the second form `Factors' returns the factorization of the ring
## element <r> in its default ring (see "DefaultRing").
## The factorization is returned as a list of primes (see "IsPrime").
## Each element in the list is a standard associate (see
## "StandardAssociate") except the first one, which is multiplied by a unit
## as necessary to have `Product( Factors( <R>, <r> ) ) = <r>'.
## This list is usually also sorted, thus smallest prime factors come first.
## If <r> is a unit or zero, `Factors( <R>, <r> ) = [ <r> ]'.
##
#T Who does really need the additive structure?
#T We could define `Factors' for arbitrary commutative monoids.
##
DeclareOperation( "Factors", [ IsRing, IsRingElement ] );
#############################################################################
##
#O IsAssociated( <R>, <r>, <s> )
#O IsAssociated( <r>, <s> )
##
## In the first form `IsAssociated' returns `true' if the two ring elements
## <r> and <s> are associated in the ring <R> and `false' otherwise.
## In the second form `IsAssociated' returns `true' if the two ring elements
## <r> and <s> are associated in their default ring (see "DefaultRing") and
## `false' otherwise.
##
## Two elements $r$ and $s$ of a ring $R$ are called *associated* if there
## is a unit $u$ of $R$ such that $r u = s$.
##
DeclareOperation( "IsAssociated", [ IsRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O Associates( <R>, <r> )
#O Associates( <r> )
##
## In the first form `Associates' returns the set of associates of <r> in
## the ring <R>.
## In the second form `Associates' returns the set of associates of the
## ring element <r> in its default ring (see "DefaultRing").
##
## Two elements $r$ and $s$ of a ring $R$ are called *associated* if there
## is a unit $u$ of $R$ such that $r u = s$.
##
DeclareOperation( "Associates",
[ IsRing, IsRingElement ] );
#############################################################################
##
#O IsUnit( <R>, <r> ) . . . . . . . . . check whether <r> is a unit in <R>
#O IsUnit( <r> ) . . . . . . check whether <r> is a unit in its default ring
##
## In the first form `IsUnit' returns `true' if <r> is a unit in the ring
## <R>.
## In the second form `IsUnit' returns `true' if the ring element <r> is a
## unit in its default ring (see "DefaultRing").
##
## An element $r$ is called a *unit* in a ring $R$, if $r$ has an inverse in
## $R$.
##
## `IsUnit' may call `Quotient'.
#T really?
##
DeclareOperation( "IsUnit", [ IsRing, IsRingElement ] );
#############################################################################
##
#O InterpolatedPolynomial( <R>, <x>, <y> ) . . . . . . . . . . interpolation
##
## `InterpolatedPolynomial' returns, for given lists <x>, <y> of elements in
## a ring <R> of the same length $n$, say, the unique polynomial of degree
## less than $n$ which has value <y>[$i$] at <x>[$i$],
## for all $i\in\{1,\ldots,n\}$.
## Note that the elements in <x> must be distinct.
##
DeclareOperation( "InterpolatedPolynomial",
[ IsRing, IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
#O Quotient( <R>, <r>, <s> )
#O Quotient( <r>, <s> )
##
## In the first form `Quotient' returns the quotient of the two ring
## elements <r> and <s> in the ring <R>.
## In the second form `Quotient' returns the quotient of the two ring
## elements <r> and <s> in their default ring.
## It returns `fail' if the quotient does not exist in the respective ring.
##
## (To perform the division in the quotient field of a ring, use the
## quotient operator `/'.)
##
DeclareOperation( "Quotient", [ IsRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O StandardAssociate( <R>, <r> )
#O StandardAssociate( <r> )
##
## In the first form `StandardAssociate' returns the standard associate of
## the ring element <r> in the ring <R>.
## In the second form `StandardAssociate' returns the standard associate of
## the ring element <r> in its default ring (see "DefaultRing").
##
## The *standard associate* of a ring element $r$ of $R$ is an associated
## element of $r$ which is, in a ring dependent way, distinguished among the
## set of associates of $r$.
## For example, in the ring of integers the standard associate is the
## absolute value.
##
DeclareOperation( "StandardAssociate", [ IsRing, IsRingElement ] );
#############################################################################
##
#O IsPrime( <R>, <r> )
#O IsPrime( <r> )
##
## In the first form `IsPrime' returns `true' if the ring element <r> is a
## prime in the ring <R> and `false' otherwise.
## In the second form `IsPrime' returns `true' if the ring element <r> is a
## prime in its default ring (see "DefaultRing") and `false' otherwise.
##
## An element $r$ of a ring $R$ is called *prime* if for each pair $s$ and
## $t$ such that $r$ divides $s t$ the element $r$ divides either $s$ or
## $t$.
## Note that there are rings where not every irreducible element
## (see "IsIrreducibleRingElement") is a prime.
##
DeclareOperation( "IsPrime", [ IsRing, IsRingElement ] );
#############################################################################
##
#O IsIrreducibleRingElement( <R>, <r> )
#O IsIrreducibleRingElement( <r> )
##
## In the first form `IsIrreducibleRingElement' returns `true' if the ring
## element <r> is irreducible in the ring <R> and `false' otherwise.
## In the second form `IsIrreducibleRingElement' returns `true' if the ring
## element <r> is irreducible in its default ring (see "DefaultRing") and
## `false' otherwise.
##
## An element $r$ of a ring $R$ is called *irreducible* if $r$ is not a
## unit in $R$ and if there is no nontrivial factorization of $r$ in $R$,
## i.e., if there is no representation of $r$ as product $s t$ such that
## neither $s$ nor $t$ is a unit (see "IsUnit").
## Each prime element (see "IsPrime") is irreducible.
##
DeclareOperation( "IsIrreducibleRingElement", [ IsRing, IsRingElement ] );
#############################################################################
##
#O EuclideanDegree( <R>, <r> )
#O EuclideanDegree( <r> )
##
## In the first form `EuclideanDegree' returns the Euclidean degree of the
## ring element in the ring <R>.
## In the second form `EuclideanDegree' returns the Euclidean degree of the
## ring element <r> in its default ring.
## <R> must of course be a Euclidean ring (see "IsEuclideanRing").
##
DeclareOperation( "EuclideanDegree", [ IsEuclideanRing, IsRingElement ] );
#############################################################################
##
#O EuclideanRemainder( <R>, <r>, <m> )
#O EuclideanRemainder( <r>, <m> )
##
## In the first form `EuclideanRemainder' returns the remainder of the ring
## element <r> modulo the ring element <m> in the ring <R>.
## In the second form `EuclideanRemainder' returns the remainder of the ring
## element <r> modulo the ring element <m> in their default ring.
## The ring <R> must be a Euclidean ring (see "IsEuclideanRing") otherwise
## an error is signalled.
##
DeclareOperation( "EuclideanRemainder",
[ IsEuclideanRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O EuclideanQuotient( <R>, <r>, <m> )
#O EuclideanQuotient( <r>, <m> )
##
## In the first form `EuclideanQuotient' returns the Euclidean quotient of
## the ring elements <r> and <m> in the ring <R>.
## In the second form `EuclideanQuotient' returns the Euclidean quotient of
## the ring elements <r> and <m> in their default ring.
## The ring <R> must be a Euclidean ring (see "IsEuclideanRing") otherwise
## an error is signalled.
##
DeclareOperation( "EuclideanQuotient",
[ IsEuclideanRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O QuotientRemainder( <R>, <r>, <m> )
#O QuotientRemainder( <r>, <m> )
##
## In the first form `QuotientRemainder' returns the Euclidean quotient
## and the Euclidean remainder of the ring elements <r> and <m> in the ring
## <R>.
## In the second form `QuotientRemainder' returns the Euclidean quotient and
## the Euclidean remainder of the ring elements <r> and <m> in their default
## ring as pair of ring elements.
## The ring <R> must be a Euclidean ring (see "IsEuclideanRing") otherwise
## an error is signalled.
##
DeclareOperation( "QuotientRemainder",
[ IsRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O QuotientMod( <R>, <r>, <s>, <m> )
#O QuotientMod( <r>, <s>, <m> )
##
## In the first form `QuotientMod' returns the quotient of the ring
## elements <r> and <s> modulo the ring element <m> in the ring <R>.
## In the second form `QuotientMod' returns the quotient of the ring elements
## <r> and <s> modulo the ring element <m> in their default ring (see
## "DefaultRing").
## <R> must be a Euclidean ring (see "IsEuclideanRing") so that
## `EuclideanRemainder' (see "EuclideanRemainder") can be applied.
## If the modular quotient does not exist, `fail' is returned.
##
## The quotient $q$ of $r$ and $s$ modulo $m$ is an element of $R$ such that
## $q s = r$ modulo $m$, i.e., such that $q s - r$ is divisible by $m$ in
## $R$ and that $q$ is either 0 (if $r$ is divisible by $m$) or the
## Euclidean degree of $q$ is strictly smaller than the Euclidean degree of
## $m$.
##
DeclareOperation( "QuotientMod",
[ IsRing, IsRingElement, IsRingElement, IsRingElement ] );
#############################################################################
##
#O PowerMod( <R>, <r>, <e>, <m> )
#O PowerMod( <r>, <e>, <m> )
##
## In the first form `PowerMod' returns the <e>-th power of the ring
## element <r> modulo the ring element <m> in the ring <R>.
## In the second form `PowerMod' returns the <e>-th power of the ring
## element <r> modulo the ring element <m> in their default ring (see
## "DefaultRing").
## <e> must be an integer.
## <R> must be a Euclidean ring (see "IsEuclideanRing") so that
## `EuclideanRemainder' (see "EuclideanRemainder") can be applied to its
## elements.
##
## If $e$ is positive the result is $r^e$ modulo $m$.
## If $e$ is negative then `PowerMod' first tries to find the inverse of $r$
## modulo $m$, i.e., $i$ such that $i r = 1$ modulo $m$.
## If the inverse does not exist an error is signalled.
## If the inverse does exist `PowerMod' returns
## `PowerMod( <R>, <i>, -<e>, <m> )'.
##
## `PowerMod' reduces the intermediate values modulo $m$, improving
## performance drastically when <e> is large and <m> small.
##
DeclareOperation( "PowerMod",
[ IsRing, IsRingElement, IsInt, IsRingElement ] );
#############################################################################
##
#F Gcd( <R>, <r1>, <r2>, ... )
#F Gcd( <R>, <list> )
#F Gcd( <r1>, <r2>, ... )
#F Gcd( <list> )
##
## In the first two forms `Gcd' returns the greatest common divisor of the
## ring elements `<r1>, <r2>, ...' resp. of the ring elements in the list
## <list> in the ring <R>.
## In the second two forms `Gcd' returns the greatest common divisor of the
## ring elements `<r1>, <r2>, ...' resp. of the ring elements in the list
## <list> in their default ring (see "DefaultRing").
## <R> must be a Euclidean ring (see "IsEuclideanRing") so that
## `QuotientRemainder' (see "QuotientRemainder") can be applied to its
## elements.
## `Gcd' returns the standard associate (see "StandardAssociate") of the
## greatest common divisors.
##
## A greatest common divisor of the elements $r_1, r_2, \ldots$ of the
## ring $R$ is an element of largest Euclidean degree (see
## "EuclideanDegree") that is a divisor of $r_1, r_2, \ldots$ .
##
## We define
## `Gcd( <r>, $0_{<R>}$ ) = Gcd( $0_{<R>}$, <r> ) = StandardAssociate( <r> )'
## and `Gcd( $0_{<R>}$, $0_{<R>}$ ) = $0_{<R>}$'.
##
DeclareGlobalFunction( "Gcd" );
#############################################################################
##
#O GcdOp( <R>, <r>, <s> )
#O GcdOp( <r>, <s> )
##
## `GcdOp' is the operation to compute the greatest common divisor of
## two ring elements <r>, <s> in the ring <R> or in their default ring.
##
DeclareOperation( "GcdOp",
[ IsEuclideanRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#F GcdRepresentation( <R>, <r1>, <r2>, ... )
#F GcdRepresentation( <R>, <list> )
#F GcdRepresentation( <r1>, <r2>, ... )
#F GcdRepresentation( <list> )
##
## In the first two forms `GcdRepresentation' returns the representation of
## the greatest common divisor of the ring elements `<r1>, <r2>, ...' resp.
## of the ring elements in the list <list> in the ring <R>.
## In the second two forms `GcdRepresentation' returns the representation of
## the greatest common divisor of the ring elements `<r1>, <r2>, ...' resp.
## of the ring elements in the list <list> in their default ring
## (see "DefaultRing").
## <R> must be a Euclidean ring (see "IsEuclideanRing") so that
## `Gcd' (see "Gcd") can be applied to its elements.
##
## The representation of the gcd $g$ of the elements $r_1, r_2, \ldots$
## of a ring $R$ is a list of ring elements $s_1, s_2, \ldots$ of $R$,
## such that $g = s_1 r_1 + s_2 r_2 + \cdots$.
## That this representation exists can be shown using the Euclidean
## algorithm, which in fact can compute those coefficients.
##
DeclareGlobalFunction( "GcdRepresentation" );
#############################################################################
##
#O GcdRepresentationOp( <R>, <r>, <s> )
#O GcdRepresentationOp( <r>, <s> )
##
## `GcdRepresentationOp' is the operation to compute the representation of
## the greatest common divisor of two ring elements <r>, <s> in the ring
## <R> or in their default ring, respectively.
##
DeclareOperation( "GcdRepresentationOp",
[ IsEuclideanRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#F Lcm( <R>, <r1>, <r2>, ... )
#F Lcm( <R>, <list> )
#F Lcm( <r1>, <r2>, ... )
#F Lcm( <list> )
#T optional ``1'' in list version?
##
## In the first two forms `Lcm' returns the least common multiple of the
## ring elements `<r1>, <r2>, ...' resp. of the ring elements in the list
## <list> in the ring <R>.
## In the second two forms `Lcm' returns the least common multiple of the
## ring elements `<r1>, <r2>, ...' resp. of the ring elements in the list
## <list> in their default ring (see~"DefaultRing").
##
## <R> must be a Euclidean ring (see~"IsEuclideanRing") so that `Gcd'
## (see~"Gcd") can be applied to its elements.
## `Lcm' returns the standard associate (see~"StandardAssociate") of the
## least common multiples.
##
## A least common multiple of the elements $r_1, r_2, \ldots$ of the
## ring $R$ is an element of smallest Euclidean degree
## (see~"EuclideanDegree") that is a multiple of $r_1, r_2, \ldots$ .
##
## We define
## `Lcm( <r>, $0_{<R>}$ ) = Lcm( $0_{<R>}$, <r> ) = StandardAssociate( <r> )'
## and `Lcm( $0_{<R>}$, $0_{<R>}$ ) = $0_{<R>}$'.
##
## `Lcm' uses the equality $lcm(m,n) = m\*n / gcd(m,n)$ (see~"Gcd").
##
DeclareGlobalFunction( "Lcm" );
#############################################################################
##
#O LcmOp( <R>, <r>, <s> )
#O LcmOp( <r>, <s> )
##
## `LcmOp' is the operation to compute the least common multiple of
## two ring elements <r>, <s> in the ring <R> or in their default ring,
## respectively.
##
DeclareOperation( "LcmOp",
[ IsEuclideanRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O PadicValuation( <r>, <p> )
##
## `PadicValuation' is the operation to compute the <p>-adic valuation of
## a ring element <r>.
##
DeclareOperation( "PadicValuation", [ IsRingElement, IsPosInt ] );
#############################################################################
##
#E
|