1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
#############################################################################
##
#W straight.gd GAP library Thomas Breuer
#W Alexander Hulpke
#W Max Neunhoeffer
##
#H @(#)$Id: straight.gd,v 4.17.4.1 2006/02/26 14:36:27 gap Exp $
##
#Y Copyright (C) 1999, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of the operations
## for straight line programs.
##
## 1. Functions for straight line programs
## 2. Functions for elements represented by straight line programs
##
Revision.straight_gd :=
"@(#)$Id: straight.gd,v 4.17.4.1 2006/02/26 14:36:27 gap Exp $";
#############################################################################
##
## 1. Functions for straight line programs
##
#############################################################################
#1
## *Straight line programs* describe an efficient way for evaluating an
## abstract word at concrete generators,
## in a more efficient way than with `MappedWord' (see~"MappedWord").
## For example, the associative word $ababbab$ of length $7$ can be computed
## from the generators $a$, $b$ with only four multiplications,
## by first computing $c = ab$, then $d = cb$, and then $cdc$;
## Alternatively, one can compute $c = ab$, $e = bc$, and $aee$.
## In each step of these computations, one forms words in terms of the
## words computed in the previous steps.
##
## A straight line program in {\GAP} is represented by an object in the
## category `IsStraightLineProgram' (see~"IsStraightLineProgram")
## that stores a list of ``lines''
## each of which has one of the following three forms.
## \beginlist%ordered
## \item{1.}
## a nonempty dense list $l$ of integers,
## \item{2.}
## a pair $[ l, i ]$
## where $l$ is a list of form 1. and $i$ is a positive integer,
## \item{3.}
## a list $[ l_1, l_2, \ldots, l_k ]$
## where each $l_i$ is a list of form 1.;
## this may occur only for the last line of the program.
## \endlist
##
## The lists of integers that occur are interpreted as external
## representations of associative words
## (see~"The External Representation for Associative Words");
## for example, the list $[ 1, 3, 2, -1 ]$ represents the word
## $g_1^3 g_2^{-1}$, with $g_1$ and $g_2$ the first and second abstract
## generator, respectively.
##
## Straight line programs can be constructed using
## `StraightLineProgram' (see~"StraightLineProgram").
##
## Defining attributes for straight line programs are
## `NrInputsOfStraightLineProgram' (see~"NrInputsOfStraightLineProgram")
## and `LinesOfStraightLineProgram' (see~"LinesOfStraightLineProgram").
## Another operation for straight line programs is
## `ResultOfStraightLineProgram' (see~"ResultOfStraightLineProgram").
##
## Special methods applicable to straight line programs are installed for
## the operations `Display', `IsInternallyConsistent', `PrintObj',
## and `ViewObj'.
##
## For a straight line program <prog>, the default `Display' method prints
## the interpretation of <prog> as a sequence of assignments of associative
## words;
## a record with components `gensnames' (with value a list of strings)
## and `listname' (a string) may be entered as second argument of `Display',
## in this case these names are used, the default for `gensnames' is
## $[ `g1', `g2', \ldots ]$, the default for `listname' is $r$.
##
#############################################################################
##
#C IsStraightLineProgram( <obj> )
##
## Each straight line program in {\GAP} lies in the category
## `IsStraightLineProgram'.
##
DeclareCategory( "IsStraightLineProgram", IsObject );
#############################################################################
##
#F StraightLineProgram( <lines>[, <nrgens>] )
#F StraightLineProgram( <string>, <gens> )
#F StraightLineProgramNC( <lines>[, <nrgens>] )
#F StraightLineProgramNC( <string>, <gens> )
##
## In the first form, <lines> must be a list of lists that defines a unique
## straight line program (see~"IsStraightLineProgram");
## in this case `StraightLineProgram' returns this program,
## otherwise an error is signalled.
## The optional argument <nrgens> specifies the number of input generators
## of the program;
## if a line of form 1. (that is, a list of integers) occurs in <lines>
## except in the last position, this number is not determined by <lines>
## and therefore *must* be specified by the argument <nrgens>;
## if not then `StraightLineProgram' returns `fail'.
##
## In the second form, <string> must be a string describing an arithmetic
## expression in terms of the strings in the list <gens>,
## where multiplication is denoted by concatenation, powering is denoted by
## `^', and round brackets `(', `)' may be used.
## Each entry in <gens> must consist only of (uppercase or lowercase)
## letters (i.e., letters in `IsAlphaChar', see~"IsAlphaChar")
## such that no entry is an initial part of another one.
## Called with this input, `StraightLineProgramNC' returns a straight line
## program that evaluates to the word corresponding to <string> when called
## with generators corresponding to <gens>.
##
## `StraightLineProgramNC' does the same as `StraightLineProgram',
## except that the internal consistency of the program is not checked.
##
DeclareGlobalFunction( "StraightLineProgram" );
DeclareGlobalFunction( "StraightLineProgramNC" );
#############################################################################
##
#F StringToStraightLineProgram( <string>, <gens>, <script> )
##
## For a string <string>, a list <gens> of strings such that <string>
## describes a word in terms of <gens>, and a list <script>,
## `StringToStraightLineProgram' transforms <string> into the lines of a
## straight line program, which are collected in <script>.
##
## The return value is `true' if <string> is valid, and `false' otherwise.
##
## This function is used by `StraightLineProgram' and `ScriptFromString';
## it is only of local interest, we declare it here because it is recursive.
##
DeclareGlobalFunction( "StringToStraightLineProgram" );
#############################################################################
##
#A LinesOfStraightLineProgram( <prog> )
##
## For a straight line program <prog>, `LinesOfStraightLineProgram' returns
## the list of program lines.
## There is no default method to compute these lines if they are not stored.
##
DeclareAttribute( "LinesOfStraightLineProgram", IsStraightLineProgram );
#############################################################################
##
#A NrInputsOfStraightLineProgram( <prog> )
##
## For a straight line program <prog>, `NrInputsOfStraightLineProgram'
## returns the number of generators that are needed as input.
##
## If a line of form 1. (that is, a list of integers) occurs in the lines of
## <prog> except the last line
## then the number of generators is not determined by the lines,
## and must be set in the construction of the straight line program
## (see~"StraightLineProgram").
## So if <prog> contains a line of form 1. other than the last line
## and does *not* store the number of generators
## then `NrInputsOfStraightLineProgram' signals an error.
##
DeclareAttribute( "NrInputsOfStraightLineProgram", IsStraightLineProgram );
#############################################################################
##
#O ResultOfStraightLineProgram( <prog>, <gens> )
##
## `ResultOfStraightLineProgram' evaluates the straight line program
## (see~"IsStraightLineProgram") <prog> at the group elements in the list
## <gens>.
##
## The *result* of a straight line program with lines
## $p_1, p_2, \ldots, p_k$
## when applied to <gens> is defined as follows.
## \beginlist%ordered{a}
## \item{(a)}
## First a list $r$ of intermediate results is initialized
## with a shallow copy of $<gens>$.
## \item{(b)}
## For $i \< k$, before the $i$-th step, let $r$ be of length $n$.
## If $p_i$ is the external representation of an associative word
## in the first $n$ generators then the image of this word under the
## homomorphism that is given by mapping $r$ to these first $n$
## generators is added to $r$;
## if $p_i$ is a pair $[ l, j ]$, for a list $l$, then the same element
## is computed, but instead of being added to $r$,
## it replaces the $j$-th entry of $r$.
## \item{(c)}
## For $i = k$, if $p_k$ is the external representation of an
## associative word then the element described in (b) is the result
## of the program,
## if $p_k$ is a pair $[ l, j ]$, for a list $l$, then the result is
## the element described by $l$,
## and if $p_k$ is a list $[ l_1, l_2, \ldots, l_k ]$ of lists
## then the result is a list of group elements, where each $l_i$ is
## treated as in (b).
## \endlist
##
## Here are some examples.
## \beginexample
## gap> f:= FreeGroup( "x", "y" );; gens:= GeneratorsOfGroup( f );;
## gap> x:= gens[1];; y:= gens[2];;
## gap> prg:= StraightLineProgram( [ [] ] );
## <straight line program>
## gap> ResultOfStraightLineProgram( prg, [] );
## [ ]
## \endexample
## The above straight line program `prg' returns
## --for *any* list of input generators-- an empty list.
## \beginexample
## gap> StraightLineProgram( [ [1,2,2,3], [3,-1] ] );
## fail
## gap> prg:= StraightLineProgram( [ [1,2,2,3], [3,-1] ], 2 );
## <straight line program>
## gap> LinesOfStraightLineProgram( prg );
## [ [ 1, 2, 2, 3 ], [ 3, -1 ] ]
## gap> prg:= StraightLineProgram( "(a^2b^3)^-1", [ "a", "b" ] );
## <straight line program>
## gap> LinesOfStraightLineProgram( prg );
## [ [ [ 1, 2, 2, 3 ], 3 ], [ [ 3, -1 ], 4 ] ]
## gap> res:= ResultOfStraightLineProgram( prg, gens );
## y^-3*x^-2
## gap> res = (x^2 * y^3)^-1;
## true
## gap> NrInputsOfStraightLineProgram( prg );
## 2
## gap> Print( prg, "\n" );
## StraightLineProgram( [ [ [ 1, 2, 2, 3 ], 3 ], [ [ 3, -1 ], 4 ] ], 2 )
## gap> Display( prg );
## # input:
## r:= [ g1, g2 ];
## # program:
## r[3]:= r[1]^2*r[2]^3;
## r[4]:= r[3]^-1;
## # return value:
## r[4]
## gap> IsInternallyConsistent( StraightLineProgramNC( [ [1,2] ] ) );
## true
## gap> IsInternallyConsistent( StraightLineProgramNC( [ [1,2,3] ] ) );
## false
## gap> prg1:= StraightLineProgram( [ [1,1,2,2], [3,3,1,1] ], 2 );;
## gap> prg2:= StraightLineProgram( [ [ [1,1,2,2], 2 ], [2,3,1,1] ] );;
## gap> res1:= ResultOfStraightLineProgram( prg1, gens );
## x*y^2*x*y^2*x*y^2*x
## gap> res1 = (x*y^2)^3*x;
## true
## gap> res2:= ResultOfStraightLineProgram( prg2, gens );
## x*y^2*x*y^2*x*y^2*x
## gap> res2 = (x*y^2)^3*x;
## true
## gap> prg:= StraightLineProgram( [ [2,3], [ [3,1,1,4], [1,2,3,1] ] ], 2 );;
## gap> res:= ResultOfStraightLineProgram( prg, gens );
## [ y^3*x^4, x^2*y^3 ]
## \endexample
##
DeclareOperation( "ResultOfStraightLineProgram",
[ IsStraightLineProgram, IsHomogeneousList ] );
#############################################################################
##
#F StringOfResultOfStraightLineProgram( <prog>, <gensnames>[, \"LaTeX\"] )
##
## `StringOfResultOfStraightLineProgram' returns a string that describes the
## result of the straight line program (see~"IsStraightLineProgram") <prog>
## as word(s) in terms of the strings in the list <gensnames>.
## If the result of <prog> is a single element then the return value of
## `StringOfResultOfStraightLineProgram' is a string consisting of the
## entries of <gensnames>, opening and closing brackets `(' and `)',
## and powering by integers via `^'.
## If the result of <prog> is a list of elements then the return value of
## `StringOfResultOfStraightLineProgram' is a comma separated concatenation
## of the strings of the single elements,
## enclosed in square brackets `[', `]'.
##
DeclareGlobalFunction( "StringOfResultOfStraightLineProgram" );
#############################################################################
##
#F CompositionOfStraightLinePrograms( <prog2>, <prog1> )
##
## For two straight line programs <prog1> and <prog2>,
## `CompositionOfStraightLinePrograms' returns a straight line program
## <prog> with the properties that <prog1> and <prog> have the same number
## of inputs, and the result of <prog> when applied to given generators
## <gens> equals the result of <prog2> when this is applied to the output of
## <prog1> applied to <gens>.
##
## (Of course the number of outputs of <prog1> must be the same as the
## number of inputs of <prog2>.)
##
DeclareGlobalFunction( "CompositionOfStraightLinePrograms" );
#############################################################################
##
#F IntegratedStraightLineProgram( <listofprogs> )
##
## For a nonempty dense list <listofprogs> of straight line programs
## that have the same number $n$, say, of inputs
## (see~"NrInputsOfStraightLineProgram")
## and for which the results (see~"ResultOfStraightLineProgram") are single
## elements (i.e., *not* lists of elements),
## `IntegratedStraightLineProgram' returns a straight line program <prog>
## with $n$ inputs such that for each $n$-tuple <gens> of generators,
## `ResultOfStraightLineProgram( <prog>, <gens> )' is equal to the list
## `List( <listofprogs>, <p> -> ResultOfStraightLineProgram( <p>, <gens> )'.
##
DeclareGlobalFunction( "IntegratedStraightLineProgram" );
#############################################################################
##
## 2. Functions for elements represented by straight line programs
##
#2
## When computing with very large (in terms of memory) elements, for
## example permutations of degree a few hundred thousands, it can be
## helpful (in terms of memory usage) to represent them via straight line
## programs in terms of an original generator set. (So every element takes
## only small extra storage for the straight line program.)
##
## A straight line program element has a *seed* (a list of group elements)
## and a straight line program on the same number of generators as the
## length of this seed, its value is the value of the evaluated straight
## line program.
##
## At the moment, the entries of the straight line program have to be
## simple lists (i.e. of the first form).
##
## Straight line program elements are in the same categories
## and families as the elements of the seed, so they should work together
## with existing algorithms.
##
## Note however, that due to the different way of storage some normally
## very cheap operations (such as testing for element equality) can become
## more expensive when dealing with straight line program elements. This is
## essentially the tradeoff for using less memory.
#############################################################################
##
#R IsStraightLineProgElm(<obj>)
##
## A straight line program element is a group element given (for memory
## reasons) as a straight line program. Straight line program elements are
## positional objects, the first component is a record with a component
## `seeds', the second component the straight line program.
# we need to rank higher than default methods
DeclareFilter("StraightLineProgramElmRankFilter",100);
DeclareRepresentation("IsStraightLineProgElm",
IsMultiplicativeElementWithInverse and IsPositionalObjectRep
and StraightLineProgramElmRankFilter,[]);
#############################################################################
##
#A StraightLineProgElmType(<fam>)
##
## returns a type for straigth line program elements over the family <fam>
DeclareAttribute("StraightLineProgElmType",IsFamily);
#############################################################################
##
#F StraightLineProgElm(<seed>,<prog>)
##
## Creates a straight line program element for seed <seed> and program
## <prog>.
DeclareGlobalFunction("StraightLineProgElm");
#############################################################################
##
#F EvalStraightLineProgElm(<slpel>)
##
## evaluates a straight line program element <slpel> from its seeds.
DeclareGlobalFunction("EvalStraightLineProgElm");
#############################################################################
##
#F StraightLineProgGens(<gens>[,<base>])
##
## returns a set of straight line program elements corresponding to the
## generators in <gens>.
## If <gens> is a set of permutations then <base> can be given which must
## be a base for the group generated by <gens>. (Such a base will be used to
## speed up equality tests.)
DeclareGlobalFunction("StraightLineProgGens");
#############################################################################
##
#O StretchImportantSLPElement(<elm>)
##
## If <elm> is a straight line program element whose straight line
## representation is very long, this operation changes the
## representation of <elm> to a straight line program element, equal to
## <elm>, whose seed contains the evaluation of <elm> and whose straight
## line program has length 1.
##
## For other objects nothing happens.
##
## This operation permits to designate ``important'' elements within an
## algorithm (elements that wil be referred to often), which will be
## represented by guaranteed short straight line program elements.
DeclareOperation("StretchImportantSLPElement",
[IsMultiplicativeElementWithInverse]);
#############################################################################
##
#F TreeRepresentedWord( <roots>,<tree>,<nr> )
##
## returns a straight line element by decoding element <nr> of <tree> with
## respect to <roots>. <tree> is a tree as given by the augmented coset
## table routines.
DeclareGlobalFunction("TreeRepresentedWord");
#############################################################################
##
## 3. Functions for straight line programs, mostly needed for memory objects:
##
##
#F SLPChangesSlots( <l>, <nrinputs> )
##
## l must be the lines of an slp, nrinps the number of inputs.
## This function returns a list with the same length than l, containing
## at each position the number of the slot that is changed in the
## corresponding line of the slp. In addition one more number is
## appended to the list, namely the number of the biggest slot used.
## For the moment, this function is intentionally left undocumented.
##
DeclareGlobalFunction( "SLPChangesSlots" );
##
#F SLPOnlyNeededLinesBackward( <l>,<i>,<nrinps>,<changes>,<needed>,
## <slotsused>,<ll> )
##
## l is a list of lines of an slp, nrinps the number of inputs.
## i is the number of the last line, that is not a line of type 3 (results).
## changes is the result of SLPChangesSlots for that slp.
## needed is a list, where those entries are bound to true that are
## needed in the end of the slp. slotsused is a list that should be
## initialized with [1..nrinps] and which contains in the end the set
## of slots used.
## ll is any list.
## This functions goes backwards through the slp and adds exactly those
## lines of the slp to ll that have to be executed to produce the
## result (in backward order). All lines are transformed into type 2
## lines ([assocword,slot]). Note that needed is changed underways.
## For the moment, this function is intentionally left undocumented.
##
DeclareGlobalFunction( "SLPOnlyNeededLinesBackward" );
##
#F SLPReversedRenumbered( <ll>,<slotsused>,<nrinps>,<invtab> )
##
## Internally used function.
##
DeclareGlobalFunction( "SLPReversedRenumbered" );
##
#F RestrictOutputsOfSLP( <slp>, <k> )
##
## Returns a new slp that calculates only those outputs specified by
## <k>. <k> may be an integer or a list of integers. If <k> is an integer,
## the resulting slp calculates only the result with that number.
## If <k> is a list of integers, the resulting slp calculates those
## results with numbers in <k>. In both cases the resulting slp
## does only what is necessary. The slp must have a line with at least
## <k> expressions (lists) as its last line (if <k> is an integer).
## <slp> is either an slp or a pair where the first entry are the lines
## of the slp and the second is the number of inputs.
##
DeclareGlobalFunction( "RestrictOutputsOfSLP" );
##
#F IntermediateResultOfSLP( <slp>, <k> )
##
## Returns a new slp that calculates only the value of slot <k>
## at the end of <slp> doing only what is necessary.
## slp is either an slp or a pair where the first entry are the lines
## of the slp and the second is the number of inputs.
## Note that this assumes a general SLP with possible overwriting.
## If you know that your SLP does not overwrite slots, please use
## "IntermediateResultOfSLPWithoutOverwrite", which is much faster in this
## case.
##
DeclareGlobalFunction( "IntermediateResultOfSLP" );
##
#F IntermediateResultsOfSLPWithoutOverwriteInner( ... )
##
## Internal function.
##
DeclareGlobalFunction( "IntermediateResultsOfSLPWithoutOverwriteInner" );
##
#F IntermediateResultsOfSLPWithoutOverwrite( <slp>, <k> )
##
## Returns a new slp that calculates only the value of slots contained
## in the list k.
## Note that <slp> must not overwrite slots but only append!!!
## Use "IntermediateResultOfSLP" in the other case!
## <slp> is either a slp or a pair where the first entry is the lines
## of the slp and the second is the number of inputs.
##
DeclareGlobalFunction( "IntermediateResultsOfSLPWithoutOverwrite" );
##
#F IntermediateResultOfSLPWithoutOverwrite( <slp>, <k> )
##
## Returns a new slp that calculates only the value of slot <k>, which
## must be an integer.
## Note that <slp> must not overwrite slots but only append!!!
## Use "IntermediateResultOfSLP" in the other case!
## <slp> is either an slp or a pair where the first entry is the lines
## of the slp and the second is the number of inputs.
##
DeclareGlobalFunction( "IntermediateResultOfSLPWithoutOverwrite" );
##
#F ProductOfStraightLinePrograms( <s1>, <s2> )
##
## <s1> and <s2> must be two slps that return a single element with the same
## number of inputs. This function contructs an slp that returns the product
## of the two results the slps <s1> and <s2> would produce with the same
## input.
##
DeclareGlobalFunction( "ProductOfStraightLinePrograms" );
##
#F RewriteStraightLineProgram(<s>,<l>,<lsu>,<inputs>,<tabuslots>)
##
## The purpose of this function is the following: Append the slp <s> to
## the one currently built in <l>.
## The prospective inputs are already standing somewhere and some
## slots may not be used by the new copy of <s> within <l>.
##
## <s> must be a GAP straight line program.
## <l> must be a mutable list making the beginning of a straight line program
## without result line so far. <lsu> must be the largest used slot of the
## slp in <l> so far. <inputs> is a list of slot numbers, in which the
## inputs are, that the copy of <s> in <l> should work on, that is, its length
## must be equal to the number of inputs <s> takes. <tabuslots> is a list of
## slot numbers which will not be overwritten by the new copy of <s> in <l>.
## This function changes <l> and returns a record with components
## `l' being <l>, `results' being
## a list of slot numbers, in which the results of <s> are stored in the end
## and `lsu' being the number of the largest slot used by <l> up to now.
##
DeclareGlobalFunction( "RewriteStraightLineProgram" );
##
#F NewCompositionOfStraightLinePrograms( <s2>, <s1> )
##
## A new implementation of "CompositionOfStraightLinePrograms" using
## "RewriteStraightLineProgram".
##
DeclareGlobalFunction( "NewCompositionOfStraightLinePrograms" );
##
#F NewProductOfStraightLinePrograms( <s2>, <s1> )
##
## A new implementation of "ProductOfStraightLinePrograms" using
## "RewriteStraightLineProgram".
##
DeclareGlobalFunction( "NewProductOfStraightLinePrograms" );
#############################################################################
##
#E
|