File: tom.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (1361 lines) | stat: -rw-r--r-- 57,162 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
#############################################################################
##
#W  tom.gd                   GAP library                       Goetz Pfeiffer
#W                                                          & Thomas Merkwitz
##
#H  @(#)$Id: tom.gd,v 4.46 2003/07/21 15:24:14 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations of the category and family of tables
##  of marks, and their properties, attributes, operations and functions.
##
##  1. Tables of Marks
##  2. More about Tables of Marks
##  3. Table of Marks Objects in {\GAP}
##  4. Constructing Tables of Marks
##  5. Printing Tables of Marks
##  6. Sorting Tables of Marks
##  7. Technical Details about Tables of Marks
##  8. Attributes of Tables of Marks
##  9. Properties of Tables of Marks
##  10. Other Operations for Tables of Marks
##  11. Accessing Subgroups via Tables of Marks
##  12. The Interface between Tables of Marks and Character Tables
##  13. Generic Construction of Tables of Marks
##
Revision.tom_gd :=
    "@(#)$Id: tom.gd,v 4.46 2003/07/21 15:24:14 gap Exp $";


#############################################################################
##
##  1. Tables of Marks
#1
##  The concept of a *table of marks* was introduced by W.~Burnside in his
##  book ``Theory of Groups of Finite  Order'', see~\cite{Bur55}.
##  Therefore a table of marks is sometimes called a *Burnside matrix*.
##
##  The table of marks of a finite group $G$ is a matrix whose rows and
##  columns are labelled by the conjugacy classes of subgroups of $G$
##  and where for two subgroups $A$ and $B$ the $(A, B)$--entry is
##  the number of fixed points of $B$ in the transitive action of $G$
##  on the cosets of $A$ in $G$.
##  So the table of marks characterizes the set of all permutation
##  representations of $G$.
##
##  Moreover, the table of marks gives a compact description of the subgroup
##  lattice of $G$, since from the numbers of fixed points the numbers of
##  conjugates of a subgroup $B$ contained in a subgroup $A$ can be derived.
##
##  A table of marks of a given group $G$ can be constructed from the
##  subgroup lattice of $G$ (see~"Constructing Tables of Marks").
##  For several groups, the table of marks can be restored from the {\GAP}
##  library of tables of marks (see~"The Library of Tables of Marks").
##
##  Given the table of marks of $G$, one can display it
##  (see~"Printing Tables of Marks")
##  and derive information about $G$ and its Burnside ring from it
##  (see~"Attributes of Tables of Marks", "Properties of Tables of Marks",
##  "Other Operations for Tables of Marks").
##  Moreover, tables of marks in {\GAP} provide an easy access to the classes
##  of subgroups of their underlying groups
##  (see~"Accessing Subgroups via Tables of Marks").
##


#############################################################################
##
##  2. More about Tables of Marks
#2
##  Let $G$ be a finite group with $n$ conjugacy classes of subgroups
##  $C_1, C_2, \ldots, C_n$ and representatives $H_i \in  C_i$,
##  $1 \leq i \leq n$.
##  The *table of marks* of $G$ is defined to be the $n \times n$ matrix
##  $M = (m_{ij})$ where the *mark* $m_{ij}$ is the number of fixed points
##  of the subgroup $H_j$ in the action of $G$ on the right cosets of $H_i$
##  in $G$.
##
##  Since $H_j$ can only have fixed points if it is contained in a point
##  stablizer the matrix $M$ is lower triangular if the classes $C_i$ are
##  sorted according to the condition that if $H_i$ is contained in a
##  conjugate of $H_j$ then $i \leq j$.
##
##  Moreover, the diagonal entries $m_{ii}$ are nonzero since $m_{ii}$ equals
##  the index of $H_i$ in its normalizer in $G$.  Hence $M$ is invertible.
##  Since any transitive action of $G$ is equivalent to an action on the
##  cosets of a subgroup of $G$, one sees that the table of marks completely
##  characterizes the set of all permutation representations of $G$.
##
##  The marks $m_{ij}$ have further meanings.
##  If $H_1$ is the trivial subgroup of $G$ then each mark $m_{i1}$ in the
##  first column of $M$ is equal to the index of $H_i$ in $G$
##  since the trivial subgroup fixes all cosets of $H_i$.
##  If $H_n = G$ then each $m_{nj}$ in the last row of $M$ is equal to $1$
##  since there is only one coset of $G$ in $G$.
##  In general, $m_{ij}$ equals the number of conjugates of $H_i$ containing
##  $H_j$, multiplied by the index of $H_i$ in its normalizer in $G$.
##  Moreover, the number $c_{ij}$ of conjugates of $H_j$ which are contained
##  in $H_i$ can be derived from the marks $m_{ij}$ via the formula
##  $$
##  c_{ij} = \frac{m_{ij} m_{j1}}{m_{i1} m_{jj}}\.
##  $$
##
##  Both the marks $m_{ij}$  and the numbers of subgroups $c_{ij}$ are needed
##  for the functions described in this chapter.
##
##  A brief survey of properties of tables of marks and a description of
##  algorithms for the interactive construction of tables of marks using
##  {\GAP} can be found in~\cite{Pfe97}.
##


#############################################################################
##
##  3. Table of Marks Objects in {\GAP}
#3
##  A table of marks of a group $G$ in {\GAP} is represented by an immutable
##  (see~"Mutability and Copyability") object <tom> in the category
##  `IsTableOfMarks' (see~"IsTableOfMarks"), with defining attributes
##  `SubsTom' (see~"SubsTom") and `MarksTom' (see~"MarksTom").
##  These two attributes encode the matrix of marks in a compressed form.
##  The `SubsTom' value of <tom> is a list where for each conjugacy class of
##  subgroups the class numbers of its subgroups are stored.
##  These are exactly the positions in the corresponding row of the matrix of
##  marks which have nonzero entries.
##  The marks themselves are stored via the `MarksTom' value of <tom>,
##  which is a list that contains for each entry in `SubsTom( <tom> )' the
##  corresponding nonzero value of the table of marks.
##
##  It is possible to create table of marks objects that do not store a
##  group, moreover one can create a table of marks object from a matrix of
##  marks (see~"TableOfMarks").
##  So it may happen that a table of marks object in {\GAP} is in fact *not*
##  the table of marks of a group.
##  To some extent, the consistency of a table of marks object can be checked
##  (see~"Other Operations for Tables of Marks"),
##  but {\GAP} knows no general way to prove or disprove that a given matrix
##  of nonnegative  integers is the matrix of marks for a group.
##  Many functions for tables of marks work well without access to the group
##  --this is one of the arguments why tables of marks are so useful--,
##  but for example normalizers (see~"NormalizerTom")
##  and derived subgroups (see~"DerivedSubgroupTom") of subgroups
##  are in general not uniquely determined by the matrix of marks.
##
##  {\GAP} tables of marks are assumed to be in lower triangular form,
##  that is, if a subgroup from the conjugacy class corresponding to the
##  $i$-th row is contained in a subgroup from the class corresponding to the
##  $j$-th row j then $i \leq j$.
##
##  The `MarksTom' information can be computed from the values of the
##  attributes `NrSubsTom', `LengthsTom', `OrdersTom', and `SubsTom'
##  (see~"NrSubsTom", "LengthsTom", "OrdersTom").
##  `NrSubsTom' stores a list containing for each entry in the `SubsTom'
##  value the corresponding number of conjugates that are contained
##  in a subgroup, `LengthsTom' a list containing for each conjugacy class
##  of subgroups its length, and `OrdersTom' a list containing for each
##  class of subgroups their order.
##  So the `MarksTom' value of <tom> may be missing provided that the values
##  of `NrSubsTom', `LengthsTom', and `OrdersTom' are stored in <tom>.
##
##  Additional information about a table of marks is needed by some
##  functions.
##  The class numbers of normalizers in $G$ and the number of the derived
##  subgroup of $G$ can be stored via appropriate attributes
##  (see~"NormalizersTom", "DerivedSubgroupTom").
##
##  If <tom> stores its group $G$ and a bijection from the rows and columns
##  of the matrix of marks of <tom> to the classes of subgroups of $G$ then
##  clearly normalizers, derived subgroup etc.~can be computed from this
##  information.
##  But in general a table of marks need not have access to $G$,
##  for example <tom> might have been constructed from a generic table of
##  marks (see~"Generic Construction of Tables of Marks"),
##  or as table of marks of a factor group from a given table of marks
##  (see~"FactorGroupTom").
##  Access to the group $G$ is provided by the attribute `UnderlyingGroup'
##  (see~"UnderlyingGroup!for tables of marks") if this value is set.
##  Access to the relevant information about conjugacy classes of subgroups
##  of $G$ --compatible with the ordering of rows and columns of the marks in
##  <tom>-- is signalled by the filter `IsTableOfMarksWithGens'
##  (see~"Accessing Subgroups via Tables of Marks").
##


#############################################################################
##
##  4. Constructing Tables of Marks
##


#############################################################################
##
#A  TableOfMarks( <G> )
#A  TableOfMarks( <string> )
#A  TableOfMarks( <matrix> )
##
##  In the first form, <G> must be a finite group, and `TableOfMarks'
##  constructs the table of marks of <G>.
##  This computation requires the knowledge of the complete subgroup lattice
##  of <G> (see~"LatticeSubgroups").
##  If the lattice is not yet stored then it will be constructed.
##  This may take a while if <G> is large.
##  The result has the `IsTableOfMarksWithGens' value `true'
##  (see~"Accessing Subgroups via Tables of Marks").
##
##  In the second form, <string> must be a string, and `TableOfMarks' gets
##  the table of marks with name <string> from the {\GAP} library
##  (see "The Library of Tables of Marks").
##  If no table of marks with this name is contained in the library then
##  `fail' is returned.
##
##  In the third form, <matrix> must be a matrix or a list of rows describing
##  a lower triangular matrix where the part above the diagonal is omitted.
##  For such an argument <matrix>, `TableOfMarks' returns
##  a table of marks object (see~"Table of Marks Objects in GAP")
##  for which <matrix> is the matrix of marks.
##  Note that not every matrix
##  (containing only nonnegative integers and having lower triangular shape)
##  describes a table of marks of a group.
##  Necessary conditions are checked with `IsInternallyConsistent'
##  (see~"Other Operations for Tables of Marks"), and `fail' is returned if
##  <matrix> is proved not to describe a matrix of marks;
##  but if `TableOfMarks' returns a table of marks object created from a
##  matrix then it may still happen that this object does not describe the
##  table of marks of a group.
##
##  For an overview of operations for table of marks objects,
##  see the introduction to the Chapter~"Tables of Marks".
##
DeclareAttribute( "TableOfMarks", IsGroup );
DeclareAttribute( "TableOfMarks", IsString );
DeclareAttribute( "TableOfMarks", IsTable );


#############################################################################
##
#4
##  The following `TableOfMarks' methods for a group are installed.
##  \beginlist%unordered
##  \item{--}
##      If the group is known to be cyclic then `TableOfMarks' constructs the
##      table of marks essentially without the group, instead the knowledge
##      about the structure of cyclic groups is used.
##  \item{--}
##      If the lattice of subgroups is already stored in the group then
##      `TableOfMarks' computes the table of marks from the lattice
##      (see~"TableOfMarksByLattice").
##  \item{--}
##      If the group is known to be solvable then `TableOfMarks' takes the
##      lattice of subgroups (see~"LatticeSubgroups") of the group
##      --which means that the lattice is computed if it is not yet stored--
##      and then computes the table of marks from it.
##      This method is also accessible via the global function
##      `TableOfMarksByLattice' (see~"TableOfMarksByLattice").
##  \item{--}
##      If the group doesn't know its lattice of subgroups or its conjugacy
##      classes of subgroups then the table of marks and the conjugacy
##      classes of subgroups are computed at the same time by the cyclic
##      extension method.
##      Only the table of marks is stored because the conjugacy classes of
##      subgroups or the lattice of subgroups can be easily read off
##      (see~"LatticeSubgroupsByTom").
##  \endlist
##
##  Conversely, the lattice of subgroups of a group with known table of marks
##  can be computed using the table of marks, via the function
##  `LatticeSubgroupsByTom'.
##  This is also installed as a method for `LatticeSubgroups'.
##


#############################################################################
##
#F  TableOfMarksByLattice( <G> )
##
##  `TableOfMarksByLattice' computes the table of marks of the group <G> from
##  the lattice of subgroups of <G>.
##  This lattice is computed via `LatticeSubgroups' (see~"LatticeSubgroups")
##  if it is not yet stored in <G>.
##  The function `TableOfMarksByLattice' is installed as a method for
##  `TableOfMarks' for solvable groups and groups with stored subgroup
##  lattice, and is available as a global variable only in order to provide
##  explicit access to this method.
##
DeclareGlobalFunction( "TableOfMarksByLattice" );


#############################################################################
##
#F  LatticeSubgroupsByTom( <G> )
##
##  `LatticeSubgroupsByTom' computes the lattice of subgroups of <G> from the
##  table of marks of <G>, using `RepresentativeTom'
##  (see~"RepresentativeTom").
##
DeclareGlobalFunction( "LatticeSubgroupsByTom" );


#############################################################################
##
##  5. Printing Tables of Marks
#5
##  \indextt{ViewObj!for tables of marks}
##  The default `ViewObj' (see~"ViewObj") method for tables of  marks  prints
##  the string `\"TableOfMarks\"', followed by --if  known--  the  identifier
##  (see~"Identifier!for tables of marks") or the group of the table of marks
##  enclosed in brackets; if neither group nor identifier are known then just
##  the number of conjugacy classes of subgroups is printed instead.
##
##  \indextt{PrintObj!for tables of marks}
##  The default `PrintObj' (see~"PrintObj") method for tables of marks
##  does the same as `ViewObj',
##  except that the group is is `Print'-ed instead of `View'-ed.
##
##  \indextt{Display!for tables of marks}
##  The default `Display' (see~"Display") method for a table of marks <tom>
##  produces a formatted output of the marks in <tom>.
##  Each line of output begins with the number of the corresponding class of
##  subgroups.
##  This number is repeated if the output spreads over several pages.
##  The number of columns printed at one time depends on the actual
##  line length, which can be accessed and changed by the function
##  `SizeScreen' (see~"SizeScreen").
##
##  The optional second argument <arec> of `Display' can be used to change
##  the default style for displaying a character as shown above.
##  <arec> must be a record, its relevant components are the following.
##
##  \beginitems
##  `classes' &
##      a list of class numbers to select only the rows and columns of the
##      matrix that correspond to this list for printing,
##
##  `form' &
##      one of the strings `\"subgroups\"', `\"supergroups\"';
##      in the former case, at position $(i,j)$ of the matrix the number of
##      conjugates of $H_j$ contained in $H_i$ is printed,
##      and in the latter case, at position $(i,j)$ the number of conjugates
##      of $H_i$ which contain $H_j$ is printed.
##  \enditems
##


#############################################################################
##
##  6. Sorting Tables of Marks
##


#############################################################################
##
#C  IsTableOfMarks( <obj> )
##
##  Each table of marks belongs to this category.
##
DeclareCategory( "IsTableOfMarks", IsObject );


#############################################################################
##
#O  SortedTom( <tom>, <perm> )
##
##  `SortedTom' returns a table of marks where the rows and columns of the
##  table of marks <tom> are reordered according to the permutation <perm>.
##
##  *Note* that in each table of marks in {\GAP},
##  the matrix of marks is assumed to have lower triangular shape
##  (see~"Table of Marks Objects in GAP").
##  If the permutation <perm> does *not* have this property then the
##  functions for tables of marks might return wrong results when applied to
##  the output of `SortedTom'.
##
##  The returned table of marks has only those attribute values stored that
##  are known for <tom> and listed in `TableOfMarksComponents'
##  (see~"TableOfMarksComponents").
##
DeclareOperation( "SortedTom", [ IsTableOfMarks, IsPerm ] );


#############################################################################
##
#A  PermutationTom( <tom> )
##
##  For the table of marks <tom> of the group $G$ stored as `UnderlyingGroup'
##  value of <tom> (see~"UnderlyingGroup!for tables of marks"),
##  `PermutationTom' is a permutation $\pi$ such that the $i$-th conjugacy
##  class of subgroups of $G$ belongs to the $i^\pi$-th column and row of
##  marks in <tom>.
##
##  This attribute value is bound only if <tom> was obtained from another
##  table of marks by permuting with `SortedTom' (see~"SortedTom"),
##  and there is no default method to compute its value.
##
##  The attribute is necessary because the original and the sorted table of
##  marks have the same identifier and the same group,
##  and information computed from the group may depend on the ordering of
##  marks, for example the fusion from the ordinary character table of $G$
##  into <tom>.
##
DeclareAttribute( "PermutationTom", IsTableOfMarks );


#############################################################################
##
##  7. Technical Details about Tables of Marks
##


#############################################################################
##
#V  InfoTom
##
##  is the info class for computations concerning tables of marks.
##
DeclareInfoClass( "InfoTom" );


#############################################################################
##
#V  TableOfMarksFamily
##
##  Each table of marks belongs to this family.
##
BindGlobal( "TableOfMarksFamily",
    NewFamily( "TableOfMarksFamily", IsTableOfMarks ) );


#############################################################################
##
#F  ConvertToTableOfMarks( <record> )
##
##  `ConvertToTableOfMarks' converts a record with components from
##  `TableOfMarksComponents' into a table of marks object with the
##  corresponding attributes.
##
DeclareGlobalFunction( "ConvertToTableOfMarks" );


#############################################################################
##
##  8. Attributes of Tables of Marks
##


#############################################################################
##
#A  MarksTom( <tom> ) . . . . . . . . . . . . . . . . . .  defining attribute
#A  SubsTom( <tom> )  . . . . . . . . . . . . . . . . . .  defining attribute
##
##  The matrix of marks (see~"More about Tables of Marks") of the table of
##  marks <tom> is stored in a compressed form where zeros are omitted,
##  using the attributes `MarksTom' and `SubsTom'.
##  If $M$ is the square matrix of marks of <tom> (see~"MatTom") then the
##  `SubsTom' value of <tom> is a list that contains at position $i$ the list
##  of all positions of nonzero entries of the $i$-th row of $M$, and the
##  `MarksTom' value of <tom> is a list that contains at position $i$ the
##  list of the corresponding marks.
##
##  `MarksTom' and `SubsTom' are defining attributes of tables of marks
##  (see~"Table of Marks Objects in GAP").
##  There is no default method for computing the `SubsTom' value,
##  and the default `MarksTom' method needs the values of `NrSubsTom' and
##  `OrdersTom' (see~"NrSubsTom", "OrdersTom").
##
DeclareAttribute( "MarksTom", IsTableOfMarks );
DeclareAttribute( "SubsTom", IsTableOfMarks );


#############################################################################
##
#A  NrSubsTom( <tom> )
#A  OrdersTom( <tom> )
##
##  Instead of storing the marks (see~"MarksTom") of the table of marks <tom>
##  one can use a matrix which contains at position $(i,j)$ the number of
##  subgroups of conjugacy class $j$ that are contained in one member of the
##  conjugacy class $i$.
##  These values are stored in the `NrSubsTom' value in the same way as
##  the marks in the `MarksTom' value.
##
##  `OrdersTom' returns a list that contains at position $i$ the order of a
##  representative of the $i$-th conjugacy class of subgroups of <tom>.
##
##  One can compute the `NrSubsTom' and `OrdersTom' values from the
##  `MarksTom' value of <tom> and vice versa.
##
DeclareAttribute( "NrSubsTom", IsTableOfMarks );
DeclareAttribute( "OrdersTom", IsTableOfMarks );


#############################################################################
##
#A  LengthsTom( <tom> )
##
##  For a table of marks <tom>, `LengthsTom' returns a list of the lengths of
##  the conjugacy classes of subgroups.
##
DeclareAttribute( "LengthsTom", IsTableOfMarks );


#############################################################################
##
#A  ClassTypesTom( <tom> )
##
##  `ClassTypesTom' distinguishes isomorphism types of the classes of
##  subgroups of the table of marks <tom> as far as this is possible
##  from the `SubsTom' and `MarksTom' values of <tom>.
##
##  Two subgroups are clearly not isomorphic if they have different orders.
##  Moreover, isomorphic subgroups must contain the same number of subgroups
##  of each type.
##
##  Each type is represented by a positive integer.
##  `ClassTypesTom' returns the list which contains for each class of
##  subgroups its corresponding type.
##
DeclareAttribute( "ClassTypesTom", IsTableOfMarks );


#############################################################################
##
#A  ClassNamesTom( <tom> )
##
##  `ClassNamesTom' constructs generic names for the conjugacy classes of
##  subgroups of the table of marks <tom>.
##  In general, the generic name of a class of non--cyclic subgroups consists
##  of three parts and has the form `\"(<o>)_{<t>}<l>\"',
##  where <o> indicates the order of the subgroup,
##  <t> is a number that distinguishes different types of subgroups of the
##  same order, and <l> is a letter that distinguishes classes of subgroups
##  of the same type and order.
##  The type of a subgroup is determined by the numbers of its subgroups of
##  other types (see~"ClassTypesTom").
##  This is slightly weaker than isomorphism.
##
##  The letter is omitted if there is only one class of subgroups of that
##  order and type,
##  and the type is omitted if there is only one class of that order.
##  Moreover, the braces `{}'  around the type are omitted if the type number
##  has only one digit.
##
##  For classes of cyclic subgroups, the parentheses round the order and the
##  type are omitted.
##  Hence the most general form of their generic names is `\"<o>,<l>\"'.
##  Again, the letter is omitted if there is only one class of cyclic
##  subgroups of that order.
##
DeclareAttribute( "ClassNamesTom", IsTableOfMarks );


#############################################################################
##
#A  FusionsTom( <tom> )
##
##  For a table of marks <tom>, `FusionsTom' is a list of fusions into  other
##  tables of marks. Each fusion is a list of length  two,  the  first  entry
##  being the `Identifier' (see~"Identifier!for tables of  marks")  value  of
##  the image table, the second entry being the list of images of  the  class
##  positions of <tom> in the image table.
##
##  This attribute is mainly used for tables of marks in the {\GAP} library
##  (see~"The Library of Tables of Marks").
##
DeclareAttribute( "FusionsTom", IsTableOfMarks, "mutable" );


#############################################################################
##
#A  UnderlyingGroup( <tom> )
##
##  `UnderlyingGroup' is used to access an underlying group that is stored on
##  the table of marks <tom>.
##  There is no default method to compute an underlying group if it is not
##  stored.
##
DeclareAttribute( "UnderlyingGroup", IsTableOfMarks );


#############################################################################
##
#A  IdempotentsTom( <tom> )
#A  IdempotentsTomInfo( <tom> )
##
##  `IdempotentsTom' encodes the idempotents of the integral Burnside ring
##  described by the table of marks <tom>.
##  The return value is a list $l$ of positive integers such that each row
##  vector describing a primitive idempotent has value $1$ at all positions
##  with the same entry in $l$, and $0$ at all other positions.
##
##  According to A.~Dress~\cite{Dre69} (see also~\cite{Pfe97}),
##  these idempotents correspond to the classes of perfect subgroups,
##  and each such idempotent is the characteristic function of all those
##  subgroups that arise by cyclic extension from the corresponding perfect
##  subgroup (see~"CyclicExtensionsTom").
##
##  `IdempotentsTomInfo' returns a record with components `fixpointvectors'
##  and `primidems', both bound to lists.
##  The $i$-th entry of the `fixpointvectors' list is the $0-1$-vector
##  describing the $i$-th primitive idempotent,
##  and the $i$-th entry of `primidems' is the decomposition of this
##  idempotent in the rows of <tom>.
##
DeclareAttribute( "IdempotentsTom", IsTableOfMarks );
DeclareAttribute( "IdempotentsTomInfo", IsTableOfMarks );


#############################################################################
##
#A  Identifier( <tom> )
##
##  The identifier of a table of marks <tom> is a string.
##  It is used for printing the table of marks
##  (see~"Printing Tables of Marks")
##  and in fusions between tables of marks (see~"FusionsTom").
##
##  If <tom> is a table of marks from the {\GAP} library of tables of marks
##  (see~"The Library of Tables of Marks") then it has an identifier,
##  and if <tom> was constructed from a group with `Name' value (see~"Name")
##  then this name is chosen as `Identifier' value.
##  There is no default method to compute an identifier in all other cases.
##
DeclareAttribute( "Identifier", IsTableOfMarks );


#############################################################################
##
#A  MatTom( <tom> )
##
##  `MatTom' returns the square matrix of marks
##  (see~"More about Tables of Marks") of the table of marks <tom> which is
##  stored in a compressed form using the attributes `MarksTom' and `SubsTom'
##  (see~"MarksTom").
##  This may need substantially more space than the values of `MarksTom' and
##  `SubsTom'.
##
DeclareAttribute( "MatTom", IsTableOfMarks );


#############################################################################
##
#A  MoebiusTom( <tom> )
##
##  `MoebiusTom' computes the M{\accent127 o}bius values both of the subgroup
##  lattice of the group $G$ with table of marks <tom> and of the poset of
##  conjugacy classes of subgroups of $G$.
##  It returns a record where the component
##  `mu' contains the M{\accent127 o}bius values of the subgroup lattice,
##  and the component `nu' contains the M{\accent127 o}bius values of the
##  poset.
##
##  Moreover, according to an observation of Isaacs et al.~(see~\cite{HIO89},
##  \cite{Pah93}), the values on the subgroup lattice often can be derived
##  from those of the poset of conjugacy classes.
##  These ``expected values'' are returned in the component `ex',
##  and the list of numbers of those subgroups where the expected value does
##  not coincide with the actual value are returned in the component `hyp'.
##  For the computation of these values, the position of the derived subgroup
##  of $G$ is needed (see~"DerivedSubgroupTom").
##  If it is not uniquely determined then the result does not have the
##  components `ex' and `hyp'.
##
DeclareAttribute( "MoebiusTom", IsTableOfMarks );


#############################################################################
##
#A  WeightsTom( <tom> )
##
##  `WeightsTom' extracts the *weights* from the table of marks <tom>,
##  i.e., the diagonal entries of the matrix of marks (see~"MarksTom"),
##  indicating the index of a subgroup in its normalizer.
##
DeclareAttribute( "WeightsTom", IsTableOfMarks );


#############################################################################
##
##  9. Properties of Tables of Marks
#6
##  For a table of marks <tom> of a group $G$, the following properties
##  have the same meaning as the corresponding properties for $G$.
##  Additionally, if a positive integer <sub> is given as the second argument
##  then the value of the corresponding property for the <sub>-th class of
##  subgroups of <tom> is returned.
##  
##  \>IsAbelianTom( <tom>[, <sub>] )
##  \>IsCyclicTom( <tom>[, <sub>] )
##  \>IsNilpotentTom( <tom>[, <sub>] )
##  \>IsPerfectTom( <tom>[, <sub>] )
##  \>IsSolvableTom( <tom>[, <sub>] )
##


#############################################################################
##
#A  IsAbelianTom( <tom> )
#O  IsAbelianTom( <tom>, <sub> )
##
##  `IsAbelianTom' tests if the underlying group of the table of marks
##  <tom> is abelian.
##  If a second argument <sub> is given then `IsAbelianTom' returns whether
##  the groups in the <sub>-th class of subgroups in <tom> are abelian.
##
DeclareAttribute( "IsAbelianTom", IsTableOfMarks );
DeclareOperation( "IsAbelianTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#A  IsCyclicTom( <tom> )
#O  IsCyclicTom( <tom>, <sub> )
##
##  `IsCyclicTom' tests if the underlying group of the table of marks
##  <tom> is cyclic.
##  If a second argument <sub> is given then `IsCyclicTom' returns whether
##  the groups in the <sub>-th class of subgroups in <tom> are cyclic.
##  A subgroup is cyclic if and only if the sum over the corresponding row of
##  the inverse table of marks is nonzero (see~\cite{Ker91}, page 125).
##  Thus we only have to decompose the corresponding idempotent.
##
DeclareAttribute( "IsCyclicTom", IsTableOfMarks );
DeclareOperation( "IsCyclicTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#A  IsNilpotentTom( <tom )
#O  IsNilpotentTom( <tom>, <sub> )
##
##  `IsNilpotentTom' tests if the underlying group of the table of marks
##  <tom> is nilpotent.
##  If a second argument <sub> is given then `IsNilpotentTom' returns whether
##  the groups in the <sub>-th class of subgroups in <tom> are nilpotent.
##
DeclareAttribute( "IsNilpotentTom", IsTableOfMarks );
DeclareOperation( "IsNilpotentTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#A  IsPerfectTom( <tom> )
#O  IsPerfectTom( <tom>, <sub> )
##
##  `IsPerfectTom' tests if the underlying group of the table of marks
##  <tom> is perfect.
##  If a second argument <sub> is given then `IsPerfectTom' returns whether
##  the groups in the <sub>-th class of subgroups in <tom> are perfect.
##
DeclareAttribute( "IsPerfectTom", IsTableOfMarks );
DeclareOperation( "IsPerfectTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#A  IsSolvableTom( <tom> )
#O  IsSolvableTom( <tom>, <sub> )
##
##  `IsSolvableTom' tests if the underlying group of the table of marks
##  <tom> is solvable.
##  If a second argument <sub> is given then `IsSolvableTom' returns whether
##  the groups in the <sub>-th class of subgroups in <tom> are solvable.
##
DeclareAttribute( "IsSolvableTom", IsTableOfMarks );
DeclareOperation( "IsSolvableTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
##  10. Other Operations for Tables of Marks
#7
##  \>IsInternallyConsistent( <tom> )!{for tables of marks} O
##
##  For a table of marks <tom>, `IsInternallyConsistent'
##  decomposes all tensor products of rows of <tom>.
##  It returns `true' if all decomposition numbers are nonnegative integers,
##  and `false' otherwise.
##  This provides a strong consistency check for a table of marks.
##


#############################################################################
##
#O  DerivedSubgroupTom( <tom>, <sub> )
#F  DerivedSubgroupsTom( <tom> )
##
##  For a table of marks <tom> and a positive integer <sub>,
##  `DerivedSubgroupTom' returns either a positive integer $i$ or a list $l$
##  of positive integers.
##  In the former case, the result means that the derived subgroups of the
##  subgroups in the <sub>-th class of <tom> lie in the $i$-th class.
##  In the latter case, the class of the derived subgroups could not be
##  uniquely determined, and the position of the class of derived subgroups
##  is an entry of $l$.
##
##  Values computed with `DerivedSubgroupTom' are stored using the attribute
##  `DerivedSubgroupsTomPossible' (see~"DerivedSubgroupsTomPossible").
##
##  `DerivedSubgroupsTom' is just the list of `DerivedSubgroupTom' values for
##  all values of <sub>.
##
DeclareOperation( "DerivedSubgroupTom", [ IsTableOfMarks, IsPosInt ] );

DeclareGlobalFunction( "DerivedSubgroupsTom");


#############################################################################
##
#A  DerivedSubgroupsTomPossible( <tom> )
#A  DerivedSubgroupsTomUnique( <tom> )
##
##  Let <tom> be a table of marks.
##  The value of the attribute `DerivedSubgroupsTomPossible' is a list
##  in which the value at position $i$ --if bound-- is a positive integer or
##  a list; the meaning of the entry is the same as in `DerivedSubgroupTom'
##  (see~"DerivedSubgroupTom").
##
##  If the value of the attribute `DerivedSubgroupsTomUnique' is known for
##  <tom> then it is a list of positive integers, the value at position $i$
##  being the position of the class of derived subgroups of the $i$-th class
##  of subgroups in <tom>.
##  The derived subgroups are in general not uniquely determined by the table
##  of marks if no `UnderlyingGroup' value is stored,
##  so there is no default method for `DerivedSubgroupsTomUnique'.
##  But in some cases the derived subgroups are explicitly set when the table
##  of marks is constructed.
##  The `DerivedSubgroupsTomUnique' value is automatically set when the last
##  missing unique value is entered in the `DerivedSubgroupsTomPossible' list
##  by `DerivedSubgroupTom'.
##
DeclareAttribute( "DerivedSubgroupsTomPossible", IsTableOfMarks, "mutable" );
DeclareAttribute( "DerivedSubgroupsTomUnique", IsTableOfMarks );


#############################################################################
##
#O  NormalizerTom( <tom>, <sub> )
#A  NormalizersTom( <tom> )
##
##  Let <tom> be the table of marks of a group $G$, say.
##  `NormalizerTom' tries to find the conjugacy class of the normalizer $N$
##  in $G$ of a subgroup $U$ in the <sub>-th class of <tom>.
##  The return value is either the list of class numbers of those subgroups
##  that have the right size and contain the subgroup and all subgroups that
##  clearly contain it as a normal subgroup, or the class number of the
##  normalizer if it is uniquely determined by these conditions.
##  If <tom> knows the subgroup lattice of $G$ (see~"IsTableOfMarksWithGens")
##  then all normalizers are uniquely determined.
##  `NormalizerTom' should never return an empty list.
##
##  `NormalizersTom' returns the list of positions of the classes of
##  normalizers of subgroups in <tom>.
##  In addition to the criteria for a single class of subgroup used by
##  `NormalizerTom', the approximations of normalizers for several classes
##  are used and thus `NormalizersTom' may return better approximations
##  than `NormalizerTom'.
##
DeclareOperation( "NormalizerTom", [ IsTableOfMarks, IsPosInt ] );
DeclareAttribute( "NormalizersTom", IsTableOfMarks );


#############################################################################
##
#O  ContainedTom( <tom>, <sub1>, <sub2> )
##
##  `ContainedTom' returns the number of subgroups in class <sub1> of the
##  table of marks <tom> that are contained in one fixed member of the class
##  <sub2>.
##
DeclareOperation( "ContainedTom", [IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  ContainingTom( <tom>, <sub1>, <sub2> )
##
##  `ContainingTom' returns the number of subgroups in class <sub2> of the
##  table of marks <tom> that contain one fixed member of the class <sub1>.
##
DeclareOperation( "ContainingTom", [ IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#A  CyclicExtensionsTom( <tom> )
#O  CyclicExtensionsTom( <tom>, <p> )
#O  CyclicExtensionsTom( <tom>, <list> )
##
##  According to A.~Dress~\cite{Dre69}, two columns of the table of marks
##  <tom> are equal modulo the prime <p> if and only if the corresponding
##  subgroups are connected by a chain of normal extensions of order <p>.
##
##  In the second form, `CyclicExtensionsTom' returns the classes of this
##  equivalence relation.
##  In the third form, <list> must be a list of primes, and the return value
##  is the list of classes of the relation obtained by considering chains of
##  normal extensions of prime order where all primes are in <list>.
##  In the first form, the result is the same as in the third form,
##  with second argument the set of prime divisors of the size of the group
##  of <tom>.
##
##  (This information is not used by `NormalizerTom' (see~"NormalizerTom")
##  although it might give additional restrictions in the search of
##  normalizers.)
##
DeclareAttribute( "CyclicExtensionsTom", IsTableOfMarks );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsList ] );


#############################################################################
##
#A  ComputedCyclicExtensionsTom( <tom> )
#O  CyclicExtensionsTomOp( <tom>, <p> )
#O  CyclicExtensionsTomOp( <tom>, <list> )
##
##  The attribute `ComputedCyclicExtensionsTom' is used by the default
##  `CyclicExtensionsTom' method to store the computed equivalence classes
##  for the table of marks <tom> and access them in subsequent calls.
##
##  The operation `CyclicExtensionsTomOp' does the real work for
##  `CyclicExtensionsTom'.
##
DeclareAttribute( "ComputedCyclicExtensionsTom", IsTableOfMarks, "mutable" );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsList ] );


#############################################################################
##
#O  DecomposedFixedPointVector( <tom>, <fix> )
##
##  Let <tom> be the table of marks of the group $G$, say,
##  and let <fix> be a vector of fixed point numbers w.r.t.~an action of $G$,
##  i.e., a vector which contains for each class of subgroups the number of
##  fixed points under the given action.
##  `DecomposedFixedPointVector' returns the decomposition of <fix> into rows
##  of the table of marks.
##  This decomposition  corresponds to a decomposition of the action into
##  transitive constituents.
##  Trailing zeros in <fix> may be omitted.
##
DeclareOperation( "DecomposedFixedPointVector",
    [ IsTableOfMarks, IsList ] );


#############################################################################
##
#O  EulerianFunctionByTom( <tom>, <n>[, <sub>] )
##
##  In the first form `EulerianFunctionByTom' computes the Eulerian
##  function (see~"EulerianFunction") of the underlying group $G$ of the
##  table of marks <tom>,
##  that is, the number of <n>-tuples of elements in $G$ that generate $G$.
##  In the second form `EulerianFunctionByTom' computes the Eulerian function
##  of each subgroup in the <sub>-th class of subgroups of <tom>.
##
##  For a group $G$ whose table of marks is known, `EulerianFunctionByTom'
##  is installed as a method for `EulerianFunction' (see~"EulerianFunction").
##
DeclareOperation( "EulerianFunctionByTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "EulerianFunctionByTom",
    [ IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  IntersectionsTom( <tom>, <sub1>, <sub2> )
##
##  The intersections of the groups in the <sub1>-th conjugacy class of
##  subgroups of the table of marks <tom> with the groups in the <sub2>-th
##  conjugacy classes of subgroups of <tom> are determined up to conjugacy by
##  the decomposition of the tensor product of their rows of marks.
##  `IntersectionsTom' returns a list $l$ that describes this decomposition.
##  The $i$-th entry in $l$ is the multiplicity of groups in the
##  $i$-th conjugacy class as an intersection.
##
DeclareOperation( "IntersectionsTom",
    [ IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  FactorGroupTom( <tom>, <n> )
##
##  For a table of marks <tom> of the group $G$, say,
##  and the normal subgroup $N$ of $G$ corresponding to the <n>-th class of
##  subgroups of <tom>,
##  `FactorGroupTom' returns the table of marks of the factor
##  group $G / N$.
##
DeclareOperation( "FactorGroupTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#A  MaximalSubgroupsTom( <tom> )
#O  MaximalSubgroupsTom( <tom>, <sub> )
##
##  In the first form `MaximalSubgroupsTom' returns a list of length two,
##  the first entry being the list of positions of the classes of maximal
##  subgroups of the whole group of the table of marks <tom>,
##  the second entry being the list of class lengths of these groups.
##  In the second form the same information for the <sub>-th class of
##  subgroups is returned.
##
DeclareAttribute( "MaximalSubgroupsTom", IsTableOfMarks );
DeclareOperation( "MaximalSubgroupsTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#O  MinimalSupergroupsTom( <tom>, <sub> )
##
##  For a table of marks <tom>, `MinimalSupergroupsTom' returns a list of
##  length two, the first entry being the list of positions of the classes
##  containing the minimal supergroups of the groups in the <sub>-th class
##  of subgroups of <tom>,
##  the second entry being the list of class lengths of these groups.
##
DeclareOperation( "MinimalSupergroupsTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
##  11. Accessing Subgroups via Tables of Marks
#8
##  Let <tom> be the table of marks of the group $G$,
##  and assume that <tom> has access to $G$ via the `UnderlyingGroup' value
##  (see~"UnderlyingGroup!for tables of marks").
##  Then it makes sense to use <tom> and its ordering of conjugacy classes of
##  subgroups of $G$ for storing information for constructing representatives
##  of these classes.
##  The group $G$ is in general not sufficient for this,
##  <tom> needs more information;
##  this is available if and only if the `IsTableOfMarksWithGens' value of
##  <tom> is `true' (see~"IsTableOfMarksWithGens").
##  In this case, `RepresentativeTom' (see~"RepresentativeTom") can be used
##  to get a subgroup of the $i$-th class, for all $i$.
##
##  {\GAP} provides two different possibilities to store generators of the
##  representatives of classes of subgroups.
##  The first is implemented by the attribute `GeneratorsSubgroupsTom'
##  (see~"GeneratorsSubgroupsTom"), which uses explicit generators.
##  The second, more general, possibility is implemented by the attributes
##  `StraightLineProgramsTom' (see~"StraightLineProgramsTom") and
##  `StandardGeneratorsInfo' (see~"StandardGeneratorsInfo!for tables of marks").
##  The `StraightLineProgramsTom' value encodes the generators as 
##  straight line programs (see~"Straight Line Programs") that evaluate to
##  the generators in question when applied to standard generators of $G$.
##  This means that on the one hand, standard generators of $G$ must be known
##  in order to use `StraightLineProgramsTom'.
##  On the other hand, the straight line programs allow one to compute easily
##  generators not only of a subgroup $U$ of $G$ but also generators of the
##  image of $U$ in any representation of $G$, provided that one knows
##  standard generators of the image of $G$ under this representation
##  (see~"RepresentativeTomByGenerators" for details and an example).
##


#############################################################################
##
#A  GeneratorsSubgroupsTom( <tom> )
##
##  Let <tom> be a table of marks with `IsTableOfMarksWithGens' value `true'.
##  Then `GeneratorsSubgroupsTom' returns a list of length two,
##  the first entry being a list $l$ of elements of the group stored as
##  `UnderlyingGroup' value of <tom>,
##  the second entry being a list that contains at position $i$ a list of
##  positions in $l$ of generators of a representative of a subgroup in class
##  $i$.
##
##  The `GeneratorsSubgroupsTom' value is known for all tables of marks that
##  have been computed with `TableOfMarks' (see~"TableOfMarks") from a group,
##  and there is a method to compute the value for a table of marks that
##  admits `RepresentativeTom' (see~"RepresentativeTom").
##
DeclareAttribute( "GeneratorsSubgroupsTom", IsTableOfMarks );


#############################################################################
##
#A  StraightLineProgramsTom( <tom> )
##
##  For a table of marks <tom> with `IsTableOfMarksWithGens' value `true',
##  `StraightLineProgramsTom' returns a list that contains at position $i$
##  either a list of straight line programs or a straight line program
##  (see~"Straight Line Programs"), encoding the generators of
##  a representative of the $i$-th conjugacy class of subgroups of
##  `UnderlyingGroup( <tom> )';
##  in the former case, each straight line program returns a generator,
##  in the latter case, the program returns the list of generators.
##
##  There is no default method to compute the `StraightLineProgramsTom' value
##  of a table of marks if they are not yet stored.
##  The value is known for all tables of marks that belong to the
##  {\GAP} library of tables of marks (see~"The Library of Tables of Marks").
##
DeclareAttribute( "StraightLineProgramsTom", IsTableOfMarks );


#############################################################################
##
#A  StandardGeneratorsInfo( <tom> )
##
##  For a table of marks <tom>, a stored  value  of  `StandardGeneratorsInfo'
##  equals  the  value  of  this   attribute   for   the   underlying   group
##  (see~"UnderlyingGroup!for     tables     of     marks")     of     <tom>,
##  cf.~Section~"Standard Generators of Groups".
##
##  In this case, the `GeneratorsOfGroup' value of the underlying group $G$
##  of <tom> is assumed to be in fact a list of standard generators for $G$;
##  So one should be careful when setting the `StandardGeneratorsInfo' value
##  by hand.
##
##  There is no default method to compute the `StandardGeneratorsInfo' value
##  of a table of marks if it is not yet stored.
##
DeclareAttribute( "StandardGeneratorsInfo", IsTableOfMarks );


#############################################################################
##
#F  IsTableOfMarksWithGens( <tom> )
##
##  This filter shall express the union of the filters
##  `IsTableOfMarks and HasStraightLineProgramsTom' and
##  `IsTableOfMarks and HasGeneratorsSubgroupsTom'.
##  If a table of marks <tom> has this filter set then <tom> can be asked to
##  compute information that is in general not uniquely determined by a table
##  of marks,
##  for example the positions of derived subgroups or normalizers of
##  subgroups (see~"DerivedSubgroupTom", "NormalizerTom").
##
DeclareFilter( "IsTableOfMarksWithGens" );

InstallTrueMethod( IsTableOfMarksWithGens,
    IsTableOfMarks and HasStraightLineProgramsTom );
InstallTrueMethod( IsTableOfMarksWithGens,
    IsTableOfMarks and HasGeneratorsSubgroupsTom);


#############################################################################
##
#O  RepresentativeTom( <tom>, <sub> )
#O  RepresentativeTomByGenerators( <tom>, <sub>, <gens> )
#O  RepresentativeTomByGeneratorsNC( <tom>, <sub>, <gens> )
##
##  Let <tom> be a table of marks with `IsTableOfMarksWithGens' value `true'
##  (see~"IsTableOfMarksWithGens"), and <sub> a positive integer.
##  `RepresentativeTom' returns a representative of the <sub>-th conjugacy
##  class of subgroups of <tom>.
##
##  `RepresentativeTomByGenerators' and `RepresentativeTomByGeneratorsNC'
##  return a representative of the <sub>-th conjugacy class of subgroups of
##  <tom>, as a subgroup of the group generated by <gens>.
##  This means that the standard generators of <tom> are replaced by <gens>.
##
##  `RepresentativeTomByGenerators' checks whether mapping the standard
##  generators of <tom> to <gens> extends to a group isomorphism,
##  and returns `fail' if not.
##  `RepresentativeTomByGeneratorsNC' omits all checks.
##  So `RepresentativeTomByGenerators' is thought mainly for debugging
##  purposes;
##  note that when several representatives are constructed, it is cheaper to
##  construct (and check) the isomorphism once, and to map the groups
##  returned by `RepresentativeTom' under this isomorphism.
##  The idea behind `RepresentativeTomByGeneratorsNC', however, is to avoid
##  the overhead of using isomorphisms when <gens> are known to be standard
##  generators.
##
DeclareOperation( "RepresentativeTom", [ IsTableOfMarks, IsPosInt ] );

DeclareOperation( "RepresentativeTomByGenerators",
    [ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
      IsHomogeneousList ] );

DeclareOperation( "RepresentativeTomByGeneratorsNC",
    [ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
      IsHomogeneousList ] );


#############################################################################
##
##  12. The Interface between Tables of Marks and Character Tables
##


#############################################################################
##
#O  FusionCharTableTom( <tbl>, <tom> )  . . . . . . . . . . .  element fusion
#O  PossibleFusionsCharTableTom( <tbl>, <tom>[, <options>] ) .  element fusion
##
##  Let <tbl> be the ordinary character table of the group $G$, say,
##  and <tom> the table of marks of $G$.
##  `FusionCharTableTom' determines the fusion of the classes of elements
##  from <tbl> to the classes of cyclic subgroups on <tom>, that is,
##  a list that contains at position $i$ the position of the class of cyclic
##  subgroups in <tom> that are generated by elements in the $i$-th conjugacy
##  class of elements in <tbl>.
##
##  Three cases are handled differently.
##  \beginlist%ordered
##  \item{1.}
##       The fusion is explicitly stored on <tbl>.
##       Then nothing has to be done.
##       This happens only if both <tbl> and <tom> are tables from the {\GAP}
##       library (see~"The Library of Tables of Marks" and the manual of
##       the {\GAP} Character Table Library).
##  \item{2.}
##       The `UnderlyingGroup' values of <tbl> and <tom> are known and
##       equal.
##       Then the group is used to compute the fusion.
##  \item{3.}
##       There is neither fusion nor group information available.
##       In this case only necessary conditions can be checked,
##       and if they are not sufficient to detemine the fusion uniquely then
##       `fail' is returned by `FusionCharTableTom'.
##  \endlist
##
##  `PossibleFusionsCharTableTom' computes the list of possible fusions from
##  <tbl> to <tom>, according to the criteria that have been checked.
##  So if `FusionCharTableTom' returns a unique fusion then the list returned
##  by `PossibleFusionsCharTableTom' for the same arguments contains exactly
##  this fusion,
##  and if `FusionCharTableTom' returns `fail' then the length of this list
##  is different from $1$.
#T this is fishy!
##
##  The optional argument <options> must be a record that may have the
##  following components.
##  \beginitems
##  `fusionmap' &
##       a parametrized map which is an approximation of the desired map,
##
##  `quick' &
##       a Boolean;
##       if `true' then as soon as only one possibility remains
##       this possibility is returned immediately;
##       the default value is `false'.
##  \enditems
##
DeclareOperation( "FusionCharTableTom",
    [ IsOrdinaryTable, IsTableOfMarks ] );

DeclareOperation( "PossibleFusionsCharTableTom",
    [ IsOrdinaryTable, IsTableOfMarks ] );

DeclareOperation( "PossibleFusionsCharTableTom",
    [ IsOrdinaryTable, IsTableOfMarks, IsRecord ] );


#############################################################################
##
#O  PermCharsTom( <fus>, <tom> )
#O  PermCharsTom( <tbl>, <tom> )
##
##  `PermCharsTom' returns the list of transitive permutation characters
##  from the table of marks <tom>.
##  In the first form, <fus> must be the fusion map from the ordinary
##  character table of the group of <tom> to <tom>
##  (see~"FusionCharTableTom").
##  In the second form, <tbl> must be the character table of the group of
##  which <tom> is the table of marks.
##  If the fusion map is not uniquely determined (see~"FusionCharTableTom")
##  then `fail' is returned.
##
##  If the fusion map <fus> is given as first argument then each transitive
##  permutation character is represented by its values list.
##  If the character table <tbl> is given then the permutation characters are
##  class function objects (see Chapter~"Class Functions").
##
DeclareOperation( "PermCharsTom", [ IsList, IsTableOfMarks ] );
DeclareOperation( "PermCharsTom", [ IsOrdinaryTable, IsTableOfMarks ] );


#############################################################################
##
##  13. Generic Construction of Tables of Marks
#9
##  The following three operations construct a table of marks only from the
##  data given, i.e., without underlying group.
##


#############################################################################
##
#O  TableOfMarksCyclic( <n> )
##
##  `TableOfMarksCyclic' returns the table of marks of the cyclic group
##  of order <n>.
##
##  A cyclic group of order <n> has as its subgroups for each divisor $d$
##  of <n> a cyclic subgroup of order $d$.
##
DeclareOperation( "TableOfMarksCyclic", [ IsPosInt ] );


#############################################################################
##
#O  TableOfMarksDihedral( <n> )
##
##  `TableOfMarksDihedral' returns the table of marks of the dihedral group
##  of order <m>.
##
##  For each divisor $d$ of <m>, a dihedral group of order $m = 2n$ contains
##  subgroups of order $d$ according to the following rule.
##  If $d$ is odd and divides $n$ then there is only one cyclic subgroup of
##  order $d$.
##  If $d$ is even and divides $n$ then there are a cyclic subgroup of order
##  $d$ and two classes of dihedral subgroups of order $d$
##  (which are cyclic, too, in the case $d = 2$, see the example below).
##  Otherwise (i.e., if $d$ does not divide $n$) there is just one class of
##  dihedral subgroups of order $d$.
##
DeclareOperation( "TableOfMarksDihedral", [ IsPosInt ] );


#############################################################################
##
#O  TableOfMarksFrobenius( <p>, <q> )
##
##  `TableOfMarksFrobenius' computes the table of marks of a Frobenius group
##  of order $p q$, where $p$ is a prime and $q$ divides $p-1$.
##
DeclareOperation( "TableOfMarksFrobenius", [ IsPosInt, IsPosInt ] );


#############################################################################
##
#V  TableOfMarksComponents
##
##  The list `TableOfMarksComponents' is used when a table of marks object is
##  created from a record via `ConvertToTableOfMarks'
##  (see~"ConvertToTableOfMarks").
##  `TableOfMarksComponents' contains at position $2i-1$ a name of an
##  attribute and at position $2i$ the corresponding attribute getter
##  function.
##
BindGlobal( "TableOfMarksComponents", [
      "Identifier",                 Identifier,
      "SubsTom",                    SubsTom,
      "MarksTom",                   MarksTom,
      "NrSubsTom",                  NrSubsTom,
      "OrdersTom",                  OrdersTom,
      "NormalizersTom",             NormalizersTom,
      "DerivedSubgroupsTomUnique",  DerivedSubgroupsTomUnique,
      "UnderlyingGroup",            UnderlyingGroup,
      "StraightLineProgramsTom",    StraightLineProgramsTom,
      "GeneratorsSubgroupsTom",     GeneratorsSubgroupsTom,
      "StandardGeneratorsInfo",     StandardGeneratorsInfo,
      "PermutationTom",             PermutationTom,
      "ClassNamesTom",              ClassNamesTom,
    ] );


#############################################################################
##
#E