1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
#############################################################################
##
#W word.gd GAP library Thomas Breuer
#W & Frank Celler
##
#H @(#)$Id: word.gd,v 4.33 2002/04/15 10:05:29 sal Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the categories and operations for words and
## nonassociative words.
##
## 1. Categories of Words and Nonassociative Words
## 2. Comparison of Words
## 3. Operations for Words
## 4. Free Magmas
## 5. External Representation for Nonassociative Words
##
Revision.word_gd :=
"@(#)$Id: word.gd,v 4.33 2002/04/15 10:05:29 sal Exp $";
#############################################################################
#1
## This chapter describes categories of *words* and *nonassociative words*,
## and operations for them.
## For information about *associative words*,
## which occur for example as elements in free groups,
## see Chapter~"Associative Words".
##
#############################################################################
##
## 1. Categories of Words and Nonassociative Words
##
#############################################################################
##
#C IsWord( <obj> )
#C IsWordWithOne( <obj> )
#C IsWordWithInverse( <obj> )
##
## Given a free multiplicative structure $M$ that is freely generated by
## a subset $X$,
## any expression of an element in $M$ as an iterated product of elements
## in $X$ is called a *word* over $X$.
##
## Interesting cases of free multiplicative structures are those of
## free semigroups, free monoids, and free groups,
## where the multiplication is associative (see~"IsAssociative"),
## which are described in Chapter~"Associative Words",
## and also the case of free magmas,
## where the multiplication is nonassociative (see~"IsNonassocWord").
##
## Elements in free magmas (see~"FreeMagma") lie in the category `IsWord';
## similarly, elements in free magmas-with-one (see~"FreeMagmaWithOne")
## lie in the category `IsWordWithOne', and so on.
##
## `IsWord' is mainly a ``common roof'' for the two *disjoint* categories
## `IsAssocWord' (see~"IsAssocWord") and `IsNonassocWord'
## (see~"IsNonassocWord") of associative and nonassociative words.
## This means that associative words are *not* regarded as special cases
## of nonassociative words.
## The main reason for this setup is that we are interested in different
## external representations for associative and nonassociative words
## (see~"External Representation for Nonassociative Words" and
## "The External Representation for Associative Words").
##
## Note that elements in finitely presented groups and also elements in
## polycyclic groups in {\GAP} are *not* in `IsWord' although they are
## usually called words,
## see Chapters~"Finitely Presented Groups" and~"Pc Groups".
##
## Words are *constants* (see~"Mutability and Copyability"),
## that is, they are not copyable and not mutable.
##
## The usual way to create words is to form them as products of known words,
## starting from *generators* of a free structure such as a free magma or a
## free group (see~"FreeMagma", "FreeGroup").
##
## Words are also used to implement free algebras,
## in the same way as group elements are used to implement group algebras
## (see~"Constructing Algebras as Free Algebras" and Chapter~"Magma Rings").
##
DeclareCategory( "IsWord", IsMultiplicativeElement );
DeclareSynonym( "IsWordWithOne", IsWord and IsMultiplicativeElementWithOne );
DeclareSynonym( "IsWordWithInverse",
IsWord and IsMultiplicativeElementWithInverse );
#############################################################################
##
#C IsWordCollection( <obj> )
##
## `IsWordCollection' is the collections category
## (see~"CategoryCollections") of `IsWord'.
##
DeclareCategoryCollections( "IsWord" );
#############################################################################
##
#C IsNonassocWord( <obj> )
#C IsNonassocWordWithOne( <obj> )
##
## A *nonassociative word* in {\GAP} is an element in a free magma or
## a free magma-with-one (see~"Free Magmas").
##
## The default methods for `ViewObj' and `PrintObj' (see~"View and Print")
## show nonassociative words as products of letters,
## where the succession of multiplications is determined by round brackets.
##
## In this sense each nonassociative word describes a ``program'' to
## form a product of generators.
## (Also associative words can be interpreted as such programs,
## except that the exact succession of multiplications is not prescribed
## due to the associativity.)
## The function `MappedWord' (see~"MappedWord") implements a way to
## apply such a program.
## A more general way is provided by straight line programs
## (see~"Straight Line Programs").
##
## Note that associative words (see Chapter~"Associative Words")
## are *not* regarded as special cases of nonassociative words
## (see~"IsWord").
##
DeclareCategory( "IsNonassocWord", IsWord );
DeclareSynonym( "IsNonassocWordWithOne", IsNonassocWord and IsWordWithOne );
#############################################################################
##
#C IsNonassocWordCollection( <obj> )
#C IsNonassocWordWithOneCollection( <obj> )
##
## `IsNonassocWordCollection' is the collections category
## (see~"CategoryCollections") of `IsNonassocWord',
## and `IsNonassocWordWithOneCollection' is the collections category
## of `IsNonassocWordWithOne'.
##
DeclareCategoryCollections( "IsNonassocWord" );
DeclareCategoryCollections( "IsNonassocWordWithOne" );
#############################################################################
##
#C IsNonassocWordFamily( <obj> )
#C IsNonassocWordWithOneFamily( <obj> )
##
DeclareCategoryFamily( "IsNonassocWord" );
DeclareCategoryFamily( "IsNonassocWordWithOne" );
#############################################################################
##
## 2. Comparison of Words
#2
## \>`<w1> = <w2>'{equality!nonassociative words}
##
## Two words are equal if and only if they are words over the same alphabet
## and with equal external representations
## (see~"External Representation for Nonassociative Words" and
## "The External Representation for Associative Words").
## For nonassociative words, the latter means that the words arise from the
## letters of the alphabet by the same sequence of multiplications.
##
## \>`<w1> \< <w2>'{smaller!nonassociative words}
##
## Words are ordered according to their external representation.
## More precisely, two words can be compared if they are words over the same
## alphabet, and the word with smaller external representation is smaller.
## For nonassociative words, the ordering is defined
## in~"External Representation for Nonassociative Words";
## associative words are ordered by the shortlex ordering via `\<'
## (see~"The External Representation for Associative Words").
##
## Note that the alphabet of a word is determined by its family
## (see~"Families"),
## and that the result of each call to `FreeMagma', `FreeGroup' etc.
## consists of words over a new alphabet.
## In particular, there is no ``universal'' empty word,
## every families of words in `IsWordWithOne' has its own empty word.
##
#############################################################################
##
## 3. Operations for Words
#3
## Two words can be multiplied via `\*' only if they are words over the same
## alphabet (see~"Comparison of Words").
##
#############################################################################
##
#O MappedWord( <w>, <gens>, <imgs> )
##
## `MappedWord' returns the object that is obtained by replacing each
## occurrence in the word <w> of a generator in the list <gens>
## by the corresponding object in the list <imgs>.
## The lists <gens> and <imgs> must of course have the same length.
##
## `MappedWord' needs to do some preprocessing to get internal generator
## numbers etc. When mapping many (several thousand) words, an
## explicit loop over the words syllables might be faster.
##
## (For example, If the elements in <imgs> are all *associative words*
## (see Chapter~"Associative Words")
## in the same family as the elements in <gens>,
## and some of them are equal to the corresponding generators in <gens>,
## then those may be omitted from <gens> and <imgs>.
## In this situation, the special case that the lists <gens>
## and <imgs> have only length $1$ is handled more efficiently by
## `EliminatedWord' (see~"EliminatedWord").)
##
DeclareOperation( "MappedWord", [ IsWord, IsWordCollection, IsList ] );
#############################################################################
##
## 4. Free Magmas
#4
## The easiest way to create a family of words is to construct the free
## object generated by these words.
## Each such free object defines a unique alphabet,
## and its generators are simply the words of length one over this alphabet;
## These generators can be accessed via `GeneratorsOfMagma' in the case of
## a free magma, and via `GeneratorsOfMagmaWithOne' in the case of a free
## magma-with-one.
##
#############################################################################
##
#C IsFreeMagma( <obj> )
##
## `IsFreeMagma' is just a synonym for
## `IsNonassocWordCollection and IsMagma',
## that is, any magma (see~"IsMagma") consisting of nonassociative words
## (see~"IsNonassocWord") is in this category.
##
DeclareSynonym( "IsFreeMagma", IsNonassocWordCollection and IsMagma );
#############################################################################
##
## 5. External Representation for Nonassociative Words
#5
## The external representation of nonassociative words is defined
## as follows.
## The $i$-th generator of the family of elements in question has external
## representation $i$,
## the identity (if exists) has external representation $0$,
## the inverse of the $i$-th generator (if exists) has external
## representation $-i$.
## If $v$ and $w$ are nonassociative words with external representations
## $e_v$ and $e_w$, respectively then the product $v \* w$ has external
## representation $[ e_v, e_w ]$.
## So the external representation of any nonassociative word is either an
## integer or a nested list of integers and lists, where each list has
## length two.
##
## One can create a nonassociative word from a family of words and the
## external representation of a nonassociative word using `ObjByExtRep'.
#T (see~"ObjByExtRep").
##
#############################################################################
##
#O NonassocWord( <Fam>, <extrep> ) . . construct word from external repr.
##
DeclareSynonym( "NonassocWord", ObjByExtRep );
#############################################################################
##
#E
|