File: coll.msk

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (395 lines) | stat: -rw-r--r-- 10,260 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A  coll.msk                    GAP documentation            Alexander Hulpke
%%
%A  @(#)$Id: coll.msk,v 1.23.2.2 2006/09/16 19:02:49 jjm Exp $
%%
%Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
%Y  Copyright (C) 2002 The GAP Group
%%
\Chapter{Collections}

\FileHeader{coll}[1]

\Declaration{IsCollection}


Some of the functions for lists and collections have been described in the
chapter about lists, mainly in Section~"Operations for Lists".
In this chapter, we describe those functions for which the
``collection aspect'' seems to be more important than the ``list aspect''.
As in Chapter~"Lists", an argument that is a list will be denoted by <list>,
and an argument that is a collection will be denoted by <C>.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Collection Families}

\Declaration{CollectionsFamily}
\Declaration{IsCollectionFamily}
\Declaration{ElementsFamily}

\beginexample
gap> fam:= FamilyObj( (1,2) );;
gap> collfam:= CollectionsFamily( fam );;
gap> fam = collfam;  fam = ElementsFamily( collfam );
false
true
gap> collfam = FamilyObj( [ (1,2,3) ] );  collfam = FamilyObj( Group( () ) );
true
true
gap> collfam = CollectionsFamily( collfam );
false
\endexample

\Declaration{CategoryCollections}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Lists and Collections}

\index{Sorted Lists as Collections}

\Declaration{IsListOrCollection}


The following functions take a *list or collection* as argument,
and return a corresponding *list*.
They differ in whether or not the result is
mutable or immutable (see~"Mutability and Copyability"),
guaranteed to be sorted,
or guaranteed to admit list access in constant time
(see~"IsConstantTimeAccessList").

\Declaration{Enumerator}
\Declaration{EnumeratorSorted}
\beginexample
gap> Enumerator( [ 1, 3,, 2 ] );
[ 1, 3,, 2 ]
gap> enum:= Enumerator( Rationals );;  elm:= enum[ 10^6 ];
-69/907
gap> Position( enum, elm );
1000000
gap> IsMutable( enum );  IsSortedList( enum );
false
false
gap> IsConstantTimeAccessList( enum );
false
gap> EnumeratorSorted( [ 1, 3,, 2 ] );
[ 1, 2, 3 ]
\endexample

\Declaration{EnumeratorByFunctions}

\){\fmark List( <C> )}
\){\fmark List( <list> )}

This function is described in~"List",
together with the probably more frequently used version
which takes a function as second argument and returns the list of function
values of the list elements.
\beginexample
gap> l:= List( Group( (1,2,3) ) );
[ (), (1,3,2), (1,2,3) ]
gap> IsMutable( l );  IsSortedList( l );  IsConstantTimeAccessList( l );
true
false
true
\endexample

\Declaration{SortedList}
\beginexample
gap> l:= SortedList( Group( (1,2,3) ) );
[ (), (1,2,3), (1,3,2) ]
gap> IsMutable( l );  IsSortedList( l );  IsConstantTimeAccessList( l );
true
true
true
gap> SortedList( [ 1, 2, 1,, 3, 2 ] );
[ 1, 1, 2, 2, 3 ]
\endexample

\Declaration{SSortedList}
\beginexample
gap> l:= SSortedList( Group( (1,2,3) ) );
[ (), (1,2,3), (1,3,2) ]
gap> IsMutable( l );  IsSSortedList( l );  IsConstantTimeAccessList( l );
true
true
true
gap> SSortedList( [ 1, 2, 1,, 3, 2 ] );
[ 1, 2, 3 ]
\endexample

\Declaration{AsList}
\beginexample
gap> l:= AsList( [ 1, 3, 3,, 2 ] );
[ 1, 3, 3,, 2 ]
gap> IsMutable( l );  IsSortedList( l );  IsConstantTimeAccessList( l );
false
false
true
gap> AsList( Group( (1,2,3), (1,2) ) );
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]
\endexample

\Declaration{AsSortedList}
\beginexample
gap> l:= AsSortedList( [ 1, 3, 3,, 2 ] );
[ 1, 2, 3, 3 ]
gap> IsMutable( l );  IsSortedList( l );  IsConstantTimeAccessList( l );
false
true
true
gap> IsSSortedList( l );
false
\endexample

\Declaration{AsSSortedList}
\index{elements!of a list or collection}
\beginexample
gap> l:= AsSSortedList( l );
[ 1, 2, 3 ]
gap> IsMutable( l );  IsSSortedList( l );  IsConstantTimeAccessList( l );
false
true
true
gap> AsSSortedList( Group( (1,2,3), (1,2) ) );
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]
\endexample

\Declaration{Elements}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Attributes and Properties for Collections}

\Declaration{IsEmpty}
\Declaration{IsFinite}
\index{finiteness test!for a list or collection}
\Declaration{IsTrivial}
\Declaration{IsNonTrivial}
\beginexample
gap> IsEmpty( [] );  IsEmpty( [ 1 .. 100 ] );  IsEmpty( Group( (1,2,3) ) );
true
false
false
gap> IsFinite( [ 1 .. 100 ] );  IsFinite( Integers );
true
false
gap> IsTrivial( Integers );  IsTrivial( Group( () ) );
false
true
gap> IsNonTrivial( Integers );  IsNonTrivial( Group( () ) );
true
false
\endexample

\Declaration{IsWholeFamily}
\beginexample
gap> IsWholeFamily( Integers )
>    ;  # all rationals and cyclotomics lie in the family
false
gap> IsWholeFamily( Integers mod 3 )
>    ;  # all finite field elements in char. 3 lie in this family
false
gap> IsWholeFamily( Integers mod 4 );
true
gap> IsWholeFamily( FreeGroup( 2 ) );
true
\endexample

\Declaration{Size}
\index{size!of a list or collection}
\index{order!of a list, collection or domain}
\beginexample
gap> Size( [1,2,3] );  Size( Group( () ) );  Size( Integers );
3
1
infinity
\endexample

\Declaration{Representative}
\index{representative!of a list or collection}
\Declaration{RepresentativeSmallest}
\beginexample
gap> Representative( Rationals );
1
gap> Representative( [ -1, -2 .. -100 ] );
-1
gap> RepresentativeSmallest( [ -1, -2 .. -100 ] );
-100
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Operations for Collections}

\Declaration{IsSubset}
\index{subset test!for collections}
\beginexample
gap> IsSubset( Rationals, Integers );
true
gap> IsSubset( Integers, [ 1, 2, 3 ] );
true
gap> IsSubset( Group( (1,2,3,4) ), [ (1,2,3) ] );
false
\endexample

\Declaration{Intersection}
\index{intersection!of collections}
\beginexample
gap> Intersection( CyclotomicField(9), CyclotomicField(12) )
>       # this is one of the rare cases where the intersection of two infinite
>    ;  # domains works (`CF' is a shorthand for `CyclotomicField')
CF(3)
gap> D12 := Group( (2,6)(3,5), (1,2)(3,6)(4,5) );;
gap> Intersection( D12, Group( (1,2), (1,2,3,4,5) ) );
Group([ (1,5)(2,4) ])
gap> Intersection( D12, [ (1,3)(4,6), (1,2)(3,4) ] )
>    ;  # note that the second argument is not a proper set
[ (1,3)(4,6) ]
gap> Intersection( D12, [ (), (1,2)(3,4), (1,3)(4,6), (1,4)(5,6) ] )
>       # although the result is mathematically a group it is returned as a
>    ;  # proper set because the second argument is not regarded as a group
[ (), (1,3)(4,6) ]
gap> Intersection( Group( () ), [1,2,3] );
[  ]
gap> Intersection( [2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25] )
>    ;  # two or more lists or collections as arguments are legal
[  ]
gap> Intersection( [ [1,2,4], [2,3,4], [1,3,4] ] )
>    ;  # or one list of lists or collections
[ 4 ]
\endexample

\Declaration{Union}
\index{union!of collections}
\beginexample
gap> Union( [ (1,2,3), (1,2,3,4) ], Group( (1,2,3), (1,2) ) );
[ (), (2,3), (1,2), (1,2,3), (1,2,3,4), (1,3,2), (1,3) ]
gap> Union( [2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25] )
>    ;  # two or more lists or collections as arguments are legal
[ 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 20, 25 ]
gap> Union( [ [1,2,4], [2,3,4], [1,3,4] ] )
>    ;  # or one list of lists or collections
[ 1, 2, 3, 4 ]
gap> Union( [ ] );
[  ]
\endexample

\Declaration{Difference}
\index{set difference!of collections}
\beginexample
gap> Difference( [ (1,2,3), (1,2,3,4) ], Group( (1,2,3), (1,2) ) );
[ (1,2,3,4) ]
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Membership Test for Collections}

\indextt{\\in!operation for testing membership}
\>`<obj> in <C>'{in!for collections}@{`in'!for collections}
\>`\\in( <obj>, <C> )'{in!operation for}@{`in'!operation for} O

returns `true' if the object <obj> lies in the collection <C>,
and `false' otherwise.

The infix version of the command calls the operation `\\in',
for which methods can be installed.

\beginexample
gap> 13 in Integers;  [ 1, 2 ] in Integers;
true
false
gap> g:= Group( (1,2) );;  (1,2) in g;  (1,2,3) in g;
true
false
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Random Elements}

\index{random element!of a list or collection}
\Declaration{Random}[coll]
\beginexample
gap> Random(Rationals);
4
gap> g:= Group( (1,2,3) );;  Random( g );  Random( g );
(1,3,2)
()
\endexample

\Declaration{StateRandom}
\beginexample
gap> seed:=StateRandom();;
gap> List([1..10],i->Random(Integers));
[ -2, 1, -2, -1, 0, 1, 0, 1, -1, 0 ]
gap> List([1..10],i->Random(Integers));
[ 2, 0, 4, -1, -3, 1, -4, -1, 5, -2 ]
gap> RestoreStateRandom(seed);
gap> List([1..10],i->Random(Integers));
[ -5, -2, 0, 1, -2, -1, -3, -2, 0, 0 ]
\endexample

\Declaration{PseudoRandom}

\medskip
\FileHeader{coll}[2]
\Declaration{RandomList}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Iterators}

\Declaration{Iterator}
\beginexample
gap> iter:= Iterator( GF(5) );
<iterator>
gap> l:= [];;
gap> for i in iter do Add( l, i ); od; l;
[ 0*Z(5), Z(5)^0, Z(5), Z(5)^2, Z(5)^3 ]
gap> iter:= Iterator( [ 1, 2, 3, 4 ] );;  l:= [];;
gap> for i in iter do
>      new:= ShallowCopy( iter );
>      for j in new do Add( l, j ); od;
>    od; l;
[ 2, 3, 4, 3, 4, 4 ]
\endexample

\Declaration{IteratorSorted}
\Declaration{IsIterator}
\Declaration{IsDoneIterator}
\Declaration{NextIterator}
\Declaration{IteratorList}
\Declaration{TrivialIterator}

\beginexample
gap> iter:= Iterator( [ 1, 2, 3, 4 ] );
<iterator>
gap> sum:= 0;;
gap> while not IsDoneIterator( iter ) do
>      sum:= sum + NextIterator( iter );
>    od;
gap> IsDoneIterator( iter ); sum;
true
10
gap> ir:= Iterator( Rationals );;
gap> l:= [];; for i in [1..20] do Add( l, NextIterator( ir ) ); od; l;
[ 0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 2/3, 3/2, 3, -1/3, -2/3, -3/2, -3, 1/4, 
  3/4, 4/3, 4, -1/4 ]
gap> for i in ir do
>      if DenominatorRat( i ) > 10 then break; fi;
>    od;
gap> i;
1/11
\endexample

\Declaration{IteratorByFunctions}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E