File: fldabnum.msk

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (314 lines) | stat: -rw-r--r-- 9,106 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A  fldabnum.msk                 GAP documentation              Thomas Breuer
%%
%A  @(#)$Id: fldabnum.msk,v 1.12.2.1 2006/09/16 19:02:49 jjm Exp $
%%
%Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
%Y  Copyright (C) 2002 The GAP Group
%%
\Chapter{Abelian Number Fields}

\FileHeader[1]{fldabnum}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Construction of Abelian Number Fields}

Besides the usual construction using `Field' or `DefaultField'
(see~"Operations for Abelian Number Fields"),
abelian number fields consisting of cyclotomics can be created with
`CyclotomicField' and `AbelianNumberField'.


\Declaration{CyclotomicField}

\beginexample
gap> CyclotomicField( 5 );  CyclotomicField( [ Sqrt(3) ] );
CF(5)
CF(12)
gap> CF( CF(3), 12 );  CF( CF(4), [ Sqrt(7) ] );
AsField( CF(3), CF(12) )
AsField( GaussianRationals, CF(28) )
\endexample


\Declaration{AbelianNumberField}

\beginexample
gap> NF( 7, [ 1 ] );
CF(7)
gap> f:= NF( 7, [ 1, 2 ] );  Sqrt(-7); Sqrt(-7) in f;
NF(7,[ 1, 2, 4 ])
E(7)+E(7)^2-E(7)^3+E(7)^4-E(7)^5-E(7)^6
true
\endexample


\Declaration{GaussianRationals}

\beginexample
gap> CF(4) = GaussianRationals;
true
gap> Sqrt(-1) in GaussianRationals;
true
\endexample

% factoring of elements in GaussianRationals works?


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Operations for Abelian Number Fields}

For operations for elements of abelian number fields, e.g.,
`Conductor' (see~"Conductor") or `ComplexConjugate' (see~"ComplexConjugate"),
see Chapter~"Cyclotomic Numbers".


\index{cyclotomics!DefaultField}
For a dense list $l$ of cyclotomics, `DefaultField' (see~"DefaultField")
returns the smallest cyclotomic field containing all entries of $l$,
`Field' (see~"Field") returns the smallest field containing all entries of
$l$, which need not be a cyclotomic field.
In both cases, the fields represent vector spaces over the rationals
(see~"Integral Bases of Abelian Number Fields").

\beginexample
gap> DefaultField( [ E(5) ] ); DefaultField( [ E(3), ER(6) ] );
CF(5)
CF(24)
gap> Field( [ E(5) ] ); Field( [ E(3), ER(6) ] );
CF(5)
NF(24,[ 1, 19 ])
\endexample


\index{polynomials over abelian number fields!Factors}
Factoring of polynomials over abelian number fields consisting of cyclotomics
works in principle but is not very efficient if the degree of the field
extension is large.

\beginexample
gap> x:= Indeterminate( CF(5) );
x_1
gap> Factors( PolynomialRing( Rationals ), x^5-1 );
[ x_1-1, x_1^4+x_1^3+x_1^2+x_1+1 ]
gap> Factors( PolynomialRing( CF(5) ), x^5-1 );
[ x_1-1, x_1+(-E(5)), x_1+(-E(5)^2), x_1+(-E(5)^3), x_1+(-E(5)^4) ]
\endexample


\Declaration{IsNumberField}
\Declaration{IsAbelianNumberField}
\Declaration{IsCyclotomicField}

\beginexample
gap> IsNumberField( CF(9) ); IsAbelianNumberField( Field( [ ER(3) ] ) );
true
true
gap> IsNumberField( GF(2) );
false
gap> IsCyclotomicField( CF(9) );
true
gap> IsCyclotomicField( Field( [ Sqrt(-3) ] ) );
true
gap> IsCyclotomicField( Field( [ Sqrt(3) ] ) );
false
\endexample


\Declaration{GaloisStabilizer}

\beginexample
gap> r5:= Sqrt(5);
E(5)-E(5)^2-E(5)^3+E(5)^4
gap> GaloisCyc( r5, 4 ) = r5;  GaloisCyc( r5, 2 ) = r5;
true
false
gap> GaloisStabilizer( Field( [ r5 ] ) );
[ 1, 4 ]
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Integral Bases of Abelian Number Fields}

\FileHeader[2]{fldabnum}

\beginexample
gap> f:= CF(8);;   # a cycl. field over the rationals
gap> b:= CanonicalBasis( f );;  BasisVectors( b );
[ 1, E(8), E(4), E(8)^3 ]
gap> Coefficients( b, Sqrt(-2) );
[ 0, 1, 0, 1 ]
gap> f:= AsField( CF(4), CF(8) );;  # a cycl. field over a cycl. field
gap> b:= CanonicalBasis( f );;  BasisVectors( b );                    
[ 1, E(8) ]
gap> Coefficients( b, Sqrt(-2) );
[ 0, 1+E(4) ]
gap> f:= AsField( Field( [ Sqrt(-2) ] ), CF(8) );;
gap> # a cycl. field over a non-cycl. field
gap> b:= CanonicalBasis( f );;  BasisVectors( b );
[ 1/2+1/2*E(8)-1/2*E(8)^2-1/2*E(8)^3, 1/2-1/2*E(8)+1/2*E(8)^2+1/2*E(8)^3 ]
gap> Coefficients( b, Sqrt(-2) );
[ E(8)+E(8)^3, E(8)+E(8)^3 ]
gap> f:= Field( [ Sqrt(-2) ] );   # a non-cycl. field over the rationals
NF(8,[ 1, 3 ])
gap> b:= CanonicalBasis( f );;  BasisVectors( b );
[ 1, E(8)+E(8)^3 ]
gap> Coefficients( b, Sqrt(-2) );
[ 0, 1 ]
\endexample


\Declaration{ZumbroichBase}

\beginexample
gap> ZumbroichBase( 15, 1 ); ZumbroichBase( 12, 3 );
[ 1, 2, 4, 7, 8, 11, 13, 14 ]
[ 0, 3 ]
gap> ZumbroichBase( 10, 2 ); ZumbroichBase( 32, 4 );
[ 2, 4, 6, 8 ]
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
\endexample


\Declaration{LenstraBase}

\beginexample
gap> LenstraBase( 24, [ 1, 19 ], [ 1, 19 ], 1 );
[ [ 1, 19 ], [ 8 ], [ 11, 17 ], [ 16 ] ]
gap> LenstraBase( 24, [ 1, 19 ], [ 1, 5, 19, 23 ], 1 );
[ [ 1, 19 ], [ 5, 23 ], [ 8 ], [ 16 ] ]
gap> LenstraBase( 15, [ 1, 4 ], PrimeResidues( 15 ), 1 );
[ [ 1, 4 ], [ 2, 8 ], [ 7, 13 ], [ 11, 14 ] ]
\endexample

The first two results describe two bases of the field $\Q_3(\sqrt{6})$,
the third result describes a normal basis of $\Q_3(\sqrt{5})$.

%T missing: `IsIntegralBasis', `NormalBasis', `IsNormalBasis',
%T rings of integers in abelian number fields


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Galois Groups of Abelian Number Fields}

\atindex{abelian number fields!Galois group}%
{@abelian number fields!Galois group}
\atindex{number fields!Galois group}{@number fields!Galois group}
\index{automorphism group!of number fields}

The field automorphisms of the cyclotomic field $\Q_n$
(see Chapter~"Cyclotomic Numbers") are given by the linear maps $\ast k$
on $\Q_n$ that are defined by $`E'(n)^{\ast k} = `E'(n)^k$,
where $1 \leq k \< n$ and $`Gcd'( n, k ) = 1$ hold (see~"GaloisCyc").
Note that this action is *not* equal to exponentiation of cyclotomics,
i.e., for general cyclotomics $z$, $z^{\ast k}$ is different from $z^k$.

(In {\GAP}, the image of a cyclotomic $z$ under $\ast k$ can be computed
as $`GaloisCyc'( z, k )$.)

\beginexample
gap> ( E(5) + E(5)^4 )^2; GaloisCyc( E(5) + E(5)^4, 2 );
-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
E(5)^2+E(5)^3
\endexample

For $`Gcd'( n, k ) \not= 1$, the map $`E'(n) \mapsto `E'(n)^k$ does *not*
define a field automorphism of $\Q_n$ but only a $\Q$-linear map.

\beginexample
gap> GaloisCyc( E(5)+E(5)^4, 5 ); GaloisCyc( ( E(5)+E(5)^4 )^2, 5 );
2
-6
\endexample

\Declaration{ANFAutomorphism}
\beginexample
gap> f:= CF(25);
CF(25)
gap> alpha:= ANFAutomorphism( f, 2 );
ANFAutomorphism( CF(25), 2 )
gap> alpha^2;
ANFAutomorphism( CF(25), 4 )
gap> Order( alpha );
20
gap> E(5)^alpha;
E(5)^2
\endexample

The Galois group $Gal( \Q_n, \Q )$ of the field extension
$\Q_n / \Q$ is isomorphic to the group $(\Z / n \Z)^{\ast}$
of prime residues modulo $n$, via the isomorphism
$(\Z / n \Z)^{\ast} \rightarrow Gal( \Q_n, \Q )$ that is defined by
$k + n \Z \mapsto ( z \mapsto z^{\ast k} )$.

The Galois group of the field extension $\Q_n / L$ with
any abelian number field $L \subseteq \Q_n$ is simply the
factor group of $Gal( \Q_n, \Q )$ modulo the stabilizer of $L$,
and the Galois group of $L / L^{\prime}$, with $L^{\prime}$ an abelian
number field contained in $L$, is the subgroup in this group that stabilizes
$L^{\prime}$.
These groups are easily described in terms of $(\Z / n \Z)^{\ast}$.
Generators of $(\Z / n \Z)^{\ast}$ can be computed using
`GeneratorsPrimeResidues' (see~"GeneratorsPrimeResidues").

In {\GAP}, a field extension $L / L^{\prime}$ is given by the field
object $L$ with `LeftActingDomain' value $L^{\prime}$
(see~"Integral Bases of Abelian Number Fields").

\beginexample
gap> f:= CF(15);
CF(15)
gap> g:= GaloisGroup( f );
<group with 2 generators>
gap> Size( g ); IsCyclic( g ); IsAbelian( g );
8
false
true
gap> Action( g, NormalBase( f ), OnPoints );
Group([ (1,6)(2,4)(3,8)(5,7), (1,4,3,7)(2,8,5,6) ])
\endexample

The following example shows Galois groups of a cyclotomic field
and of a proper subfield that is not a cyclotomic field.

\beginexample
gap> gens1:= GeneratorsOfGroup( GaloisGroup( CF(5) ) );
[ ANFAutomorphism( CF(5), 2 ) ]
gap> gens2:= GeneratorsOfGroup( GaloisGroup( Field( Sqrt(5) ) ) );
[ ANFAutomorphism( NF(5,[ 1, 4 ]), 2 ) ]
gap> Order( gens1[1] );  Order( gens2[1] );
4
2
gap> Sqrt(5)^gens1[1] = Sqrt(5)^gens2[1];
true
\endexample

The following example shows the Galois group of a cyclotomic field
over a non-cyclotomic field.

\beginexample
gap> g:= GaloisGroup( AsField( Field( [ Sqrt(5) ] ), CF(5) ) );
<group with 1 generators>
gap> gens:= GeneratorsOfGroup( g );
[ ANFAutomorphism( AsField( NF(5,[ 1, 4 ]), CF(5) ), 4 ) ]
gap> x:= last[1];;  x^2;
IdentityMapping( AsField( NF(5,[ 1, 4 ]), CF(5) ) )
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Gaussians}

\Declaration{GaussianIntegers}
\Declaration{IsGaussianIntegers}

% Gcd and Euclidean... for the rings of integers in CF(4) and CF(3) !


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E