1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A fldabnum.msk GAP documentation Thomas Breuer
%%
%A @(#)$Id: fldabnum.msk,v 1.12.2.1 2006/09/16 19:02:49 jjm Exp $
%%
%Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
%Y Copyright (C) 2002 The GAP Group
%%
\Chapter{Abelian Number Fields}
\FileHeader[1]{fldabnum}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Construction of Abelian Number Fields}
Besides the usual construction using `Field' or `DefaultField'
(see~"Operations for Abelian Number Fields"),
abelian number fields consisting of cyclotomics can be created with
`CyclotomicField' and `AbelianNumberField'.
\Declaration{CyclotomicField}
\beginexample
gap> CyclotomicField( 5 ); CyclotomicField( [ Sqrt(3) ] );
CF(5)
CF(12)
gap> CF( CF(3), 12 ); CF( CF(4), [ Sqrt(7) ] );
AsField( CF(3), CF(12) )
AsField( GaussianRationals, CF(28) )
\endexample
\Declaration{AbelianNumberField}
\beginexample
gap> NF( 7, [ 1 ] );
CF(7)
gap> f:= NF( 7, [ 1, 2 ] ); Sqrt(-7); Sqrt(-7) in f;
NF(7,[ 1, 2, 4 ])
E(7)+E(7)^2-E(7)^3+E(7)^4-E(7)^5-E(7)^6
true
\endexample
\Declaration{GaussianRationals}
\beginexample
gap> CF(4) = GaussianRationals;
true
gap> Sqrt(-1) in GaussianRationals;
true
\endexample
% factoring of elements in GaussianRationals works?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Operations for Abelian Number Fields}
For operations for elements of abelian number fields, e.g.,
`Conductor' (see~"Conductor") or `ComplexConjugate' (see~"ComplexConjugate"),
see Chapter~"Cyclotomic Numbers".
\index{cyclotomics!DefaultField}
For a dense list $l$ of cyclotomics, `DefaultField' (see~"DefaultField")
returns the smallest cyclotomic field containing all entries of $l$,
`Field' (see~"Field") returns the smallest field containing all entries of
$l$, which need not be a cyclotomic field.
In both cases, the fields represent vector spaces over the rationals
(see~"Integral Bases of Abelian Number Fields").
\beginexample
gap> DefaultField( [ E(5) ] ); DefaultField( [ E(3), ER(6) ] );
CF(5)
CF(24)
gap> Field( [ E(5) ] ); Field( [ E(3), ER(6) ] );
CF(5)
NF(24,[ 1, 19 ])
\endexample
\index{polynomials over abelian number fields!Factors}
Factoring of polynomials over abelian number fields consisting of cyclotomics
works in principle but is not very efficient if the degree of the field
extension is large.
\beginexample
gap> x:= Indeterminate( CF(5) );
x_1
gap> Factors( PolynomialRing( Rationals ), x^5-1 );
[ x_1-1, x_1^4+x_1^3+x_1^2+x_1+1 ]
gap> Factors( PolynomialRing( CF(5) ), x^5-1 );
[ x_1-1, x_1+(-E(5)), x_1+(-E(5)^2), x_1+(-E(5)^3), x_1+(-E(5)^4) ]
\endexample
\Declaration{IsNumberField}
\Declaration{IsAbelianNumberField}
\Declaration{IsCyclotomicField}
\beginexample
gap> IsNumberField( CF(9) ); IsAbelianNumberField( Field( [ ER(3) ] ) );
true
true
gap> IsNumberField( GF(2) );
false
gap> IsCyclotomicField( CF(9) );
true
gap> IsCyclotomicField( Field( [ Sqrt(-3) ] ) );
true
gap> IsCyclotomicField( Field( [ Sqrt(3) ] ) );
false
\endexample
\Declaration{GaloisStabilizer}
\beginexample
gap> r5:= Sqrt(5);
E(5)-E(5)^2-E(5)^3+E(5)^4
gap> GaloisCyc( r5, 4 ) = r5; GaloisCyc( r5, 2 ) = r5;
true
false
gap> GaloisStabilizer( Field( [ r5 ] ) );
[ 1, 4 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Integral Bases of Abelian Number Fields}
\FileHeader[2]{fldabnum}
\beginexample
gap> f:= CF(8);; # a cycl. field over the rationals
gap> b:= CanonicalBasis( f );; BasisVectors( b );
[ 1, E(8), E(4), E(8)^3 ]
gap> Coefficients( b, Sqrt(-2) );
[ 0, 1, 0, 1 ]
gap> f:= AsField( CF(4), CF(8) );; # a cycl. field over a cycl. field
gap> b:= CanonicalBasis( f );; BasisVectors( b );
[ 1, E(8) ]
gap> Coefficients( b, Sqrt(-2) );
[ 0, 1+E(4) ]
gap> f:= AsField( Field( [ Sqrt(-2) ] ), CF(8) );;
gap> # a cycl. field over a non-cycl. field
gap> b:= CanonicalBasis( f );; BasisVectors( b );
[ 1/2+1/2*E(8)-1/2*E(8)^2-1/2*E(8)^3, 1/2-1/2*E(8)+1/2*E(8)^2+1/2*E(8)^3 ]
gap> Coefficients( b, Sqrt(-2) );
[ E(8)+E(8)^3, E(8)+E(8)^3 ]
gap> f:= Field( [ Sqrt(-2) ] ); # a non-cycl. field over the rationals
NF(8,[ 1, 3 ])
gap> b:= CanonicalBasis( f );; BasisVectors( b );
[ 1, E(8)+E(8)^3 ]
gap> Coefficients( b, Sqrt(-2) );
[ 0, 1 ]
\endexample
\Declaration{ZumbroichBase}
\beginexample
gap> ZumbroichBase( 15, 1 ); ZumbroichBase( 12, 3 );
[ 1, 2, 4, 7, 8, 11, 13, 14 ]
[ 0, 3 ]
gap> ZumbroichBase( 10, 2 ); ZumbroichBase( 32, 4 );
[ 2, 4, 6, 8 ]
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
\endexample
\Declaration{LenstraBase}
\beginexample
gap> LenstraBase( 24, [ 1, 19 ], [ 1, 19 ], 1 );
[ [ 1, 19 ], [ 8 ], [ 11, 17 ], [ 16 ] ]
gap> LenstraBase( 24, [ 1, 19 ], [ 1, 5, 19, 23 ], 1 );
[ [ 1, 19 ], [ 5, 23 ], [ 8 ], [ 16 ] ]
gap> LenstraBase( 15, [ 1, 4 ], PrimeResidues( 15 ), 1 );
[ [ 1, 4 ], [ 2, 8 ], [ 7, 13 ], [ 11, 14 ] ]
\endexample
The first two results describe two bases of the field $\Q_3(\sqrt{6})$,
the third result describes a normal basis of $\Q_3(\sqrt{5})$.
%T missing: `IsIntegralBasis', `NormalBasis', `IsNormalBasis',
%T rings of integers in abelian number fields
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Galois Groups of Abelian Number Fields}
\atindex{abelian number fields!Galois group}%
{@abelian number fields!Galois group}
\atindex{number fields!Galois group}{@number fields!Galois group}
\index{automorphism group!of number fields}
The field automorphisms of the cyclotomic field $\Q_n$
(see Chapter~"Cyclotomic Numbers") are given by the linear maps $\ast k$
on $\Q_n$ that are defined by $`E'(n)^{\ast k} = `E'(n)^k$,
where $1 \leq k \< n$ and $`Gcd'( n, k ) = 1$ hold (see~"GaloisCyc").
Note that this action is *not* equal to exponentiation of cyclotomics,
i.e., for general cyclotomics $z$, $z^{\ast k}$ is different from $z^k$.
(In {\GAP}, the image of a cyclotomic $z$ under $\ast k$ can be computed
as $`GaloisCyc'( z, k )$.)
\beginexample
gap> ( E(5) + E(5)^4 )^2; GaloisCyc( E(5) + E(5)^4, 2 );
-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
E(5)^2+E(5)^3
\endexample
For $`Gcd'( n, k ) \not= 1$, the map $`E'(n) \mapsto `E'(n)^k$ does *not*
define a field automorphism of $\Q_n$ but only a $\Q$-linear map.
\beginexample
gap> GaloisCyc( E(5)+E(5)^4, 5 ); GaloisCyc( ( E(5)+E(5)^4 )^2, 5 );
2
-6
\endexample
\Declaration{ANFAutomorphism}
\beginexample
gap> f:= CF(25);
CF(25)
gap> alpha:= ANFAutomorphism( f, 2 );
ANFAutomorphism( CF(25), 2 )
gap> alpha^2;
ANFAutomorphism( CF(25), 4 )
gap> Order( alpha );
20
gap> E(5)^alpha;
E(5)^2
\endexample
The Galois group $Gal( \Q_n, \Q )$ of the field extension
$\Q_n / \Q$ is isomorphic to the group $(\Z / n \Z)^{\ast}$
of prime residues modulo $n$, via the isomorphism
$(\Z / n \Z)^{\ast} \rightarrow Gal( \Q_n, \Q )$ that is defined by
$k + n \Z \mapsto ( z \mapsto z^{\ast k} )$.
The Galois group of the field extension $\Q_n / L$ with
any abelian number field $L \subseteq \Q_n$ is simply the
factor group of $Gal( \Q_n, \Q )$ modulo the stabilizer of $L$,
and the Galois group of $L / L^{\prime}$, with $L^{\prime}$ an abelian
number field contained in $L$, is the subgroup in this group that stabilizes
$L^{\prime}$.
These groups are easily described in terms of $(\Z / n \Z)^{\ast}$.
Generators of $(\Z / n \Z)^{\ast}$ can be computed using
`GeneratorsPrimeResidues' (see~"GeneratorsPrimeResidues").
In {\GAP}, a field extension $L / L^{\prime}$ is given by the field
object $L$ with `LeftActingDomain' value $L^{\prime}$
(see~"Integral Bases of Abelian Number Fields").
\beginexample
gap> f:= CF(15);
CF(15)
gap> g:= GaloisGroup( f );
<group with 2 generators>
gap> Size( g ); IsCyclic( g ); IsAbelian( g );
8
false
true
gap> Action( g, NormalBase( f ), OnPoints );
Group([ (1,6)(2,4)(3,8)(5,7), (1,4,3,7)(2,8,5,6) ])
\endexample
The following example shows Galois groups of a cyclotomic field
and of a proper subfield that is not a cyclotomic field.
\beginexample
gap> gens1:= GeneratorsOfGroup( GaloisGroup( CF(5) ) );
[ ANFAutomorphism( CF(5), 2 ) ]
gap> gens2:= GeneratorsOfGroup( GaloisGroup( Field( Sqrt(5) ) ) );
[ ANFAutomorphism( NF(5,[ 1, 4 ]), 2 ) ]
gap> Order( gens1[1] ); Order( gens2[1] );
4
2
gap> Sqrt(5)^gens1[1] = Sqrt(5)^gens2[1];
true
\endexample
The following example shows the Galois group of a cyclotomic field
over a non-cyclotomic field.
\beginexample
gap> g:= GaloisGroup( AsField( Field( [ Sqrt(5) ] ), CF(5) ) );
<group with 1 generators>
gap> gens:= GeneratorsOfGroup( g );
[ ANFAutomorphism( AsField( NF(5,[ 1, 4 ]), CF(5) ), 4 ) ]
gap> x:= last[1];; x^2;
IdentityMapping( AsField( NF(5,[ 1, 4 ]), CF(5) ) )
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Gaussians}
\Declaration{GaussianIntegers}
\Declaration{IsGaussianIntegers}
% Gcd and Euclidean... for the rings of integers in CF(4) and CF(3) !
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E
|