File: grpoper.msk

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (685 lines) | stat: -rw-r--r-- 23,108 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A  grpoper.msk                GAP documentation            Alexander Hulpke
%A                                                          Heiko Theissen
%%
%A  @(#)$Id: grpoper.msk,v 1.46.2.1 2005/05/09 07:37:51 gap Exp $
%%
%Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
%Y  Copyright (C) 2002 The GAP Group
%%
\Chapter{Group Actions}

\index{group actions}\atindex{G-sets}{@$G$-sets}
A *group action* is a triple $(G,<Omega>,\mu)$, where $G$ is a group,
<Omega> a set and $\mu\colon<Omega>\times G\to<Omega>$ a function (whose
action is compatible with the group arithmetic). We call <Omega> the
*domain* of the action.

In {\GAP}, <Omega> can be a duplicate-free collection (an object that
permits access to its elements via the <Omega>[<n>] operation, for example a
list), it does not need to be sorted (see~"IsSet").

The acting function $\mu$ is a {\GAP} function of the form

\){\kernttindent}actfun(<pnt>,<g>)

that returns the image $\mu(<pnt>,<g>)$ for a point $<pnt>\in<Omega>$ and a
group element $<g>\in<G>$.

Groups always acts from the right, that is
$\mu(\mu(<pnt>,<g>),<h>)=\mu(<pnt>,<gh>)$.

{\GAP} does not test whether an acting function `actfun' satisfies the
conditions for a group operation but silently assumes that is does.
(If it does not, results are unpredictable.)

The first section of this chapter, "About Group Actions", describes the
various ways how operations for group actions can be called.

Functions for several commonly used action are already built into {\GAP}.
These are listed in section~"Basic Actions".

The sections "The Permutation Image of an Action" and 
"Action of a group on itself" describe homomorphisms and mappings associated
to group actions as well as the permutation group image of an action.

The other sections then describe operations to compute orbits,
stabilizers, as well as
properties of actions.

Finally section~"External Sets" describes the concept of ``external sets''
which represent the concept of a *$G$-set* and underly the actions mechanism.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{About Group Actions}

\index{group actions!operations syntax}
The syntax which is used by the operations for group actions is quite
flexible. For example we can call the operation `OrbitsDomain' for the orbits
of the group <G> on the domain <Omega> in the following ways:

\)OrbitsDomain(<G>,<Omega>[,<actfun>])

The acting function <actfun> is optional. If it is not given, the built-in
action `OnPoints' (which defines an action via the caret operator `^') is
used as a default.

\)OrbitsDomain(<G>,<Omega>,<gens>,<acts>[,<actfun>])

This second version (of `OrbitsDomain') permits one to implement an action 
induced by a homomorphism:
If <H> acts on <Omega> via $\mu$ and $\varphi\colon G\to H$ is a
homomorphism, <G> acts on <Omega> via
$\mu'(\omega,g)=\mu(\omega,g^{\varphi})$:

Here <gens> must be a set of generators of <G> and <acts> the images of
<gens> under a homomorphism $\varphi\colon G\to H$.
<actfun> is the acting function for <H>, the call
to `ExampleActionFunction' implements the induced action of <G>.
Again, the acting function <actfun> is optional and `OnPoints' is used as a
default.

The advantage of this notation is that {\GAP} does not need to construct
this homomorphism $\varphi$ and the range group <H> as {\GAP} objects. (If a
small group <G> acts via complicated objects <acts> this otherwise could
lead to performance problems.)

{\GAP} does not test whether the mapping $<gens>\mapsto<acts>$
actually induces a homomorphism and the results are unpredictable if this is
not the case.

\)OrbitsDomain(<extset>) A

A third variant is to call the operation with an external set (which then
provides <G>, <Omega> and <actfun>. You will find more about external sets in
section~"External Sets".

For operations like `Stabilizer' of course the domain must be replaced by an
element of <Omega> which is to be acted on.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Basic Actions}

\index{group actions}
\index{actions}
\index{group operations}

{\GAP} already provides acting functions for the more common actions of a
group.  For built-in operations such as `Stabilizer' special methods are
available for many of these actions.

This section also shows how to implement different actions. (Note that every
action must be from the right.)

\Declaration{OnPoints}
\Declaration{OnRight}
\Declaration{OnLeftInverse}
\Declaration{OnSets}
\Declaration{OnTuples}
\Declaration{OnPairs}
\Declaration{OnSetsSets}
\Declaration{OnSetsDisjointSets}
\Declaration{OnSetsTuples}
\Declaration{OnTuplesSets}
\Declaration{OnTuplesTuples}
\beginexample
gap> g:=Group((1,2,3),(2,3,4));;
gap> Orbit(g,1,OnPoints);
[ 1, 2, 3, 4 ]
gap> Orbit(g,(),OnRight);
[ (), (1,2,3), (2,3,4), (1,3,2), (1,3)(2,4), (1,2)(3,4), (2,4,3), (1,4,2), 
  (1,4,3), (1,3,4), (1,2,4), (1,4)(2,3) ]
gap> Orbit(g,[1,2],OnPairs);
[ [ 1, 2 ], [ 2, 3 ], [ 1, 3 ], [ 3, 1 ], [ 3, 4 ], [ 2, 1 ], [ 1, 4 ], 
  [ 4, 1 ], [ 4, 2 ], [ 3, 2 ], [ 2, 4 ], [ 4, 3 ] ]
gap> Orbit(g,[1,2],OnSets);
[ [ 1, 2 ], [ 2, 3 ], [ 1, 3 ], [ 3, 4 ], [ 1, 4 ], [ 2, 4 ] ]
\endexample

\beginexample
gap> Orbit(g,[[1,2],[3,4]],OnSetsSets);
[ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 1, 4 ], [ 2, 3 ] ], [ [ 1, 3 ], [ 2, 4 ] ] ]
gap> Orbit(g,[[1,2],[3,4]],OnTuplesSets);
[ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 2, 3 ], [ 1, 4 ] ], [ [ 1, 3 ], [ 2, 4 ] ], 
  [ [ 3, 4 ], [ 1, 2 ] ], [ [ 1, 4 ], [ 2, 3 ] ], [ [ 2, 4 ], [ 1, 3 ] ] ]
gap> Orbit(g,[[1,2],[3,4]],OnSetsTuples);
[ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 1, 4 ], [ 2, 3 ] ], [ [ 1, 3 ], [ 4, 2 ] ], 
  [ [ 2, 4 ], [ 3, 1 ] ], [ [ 2, 1 ], [ 4, 3 ] ], [ [ 3, 2 ], [ 4, 1 ] ] ]
gap> Orbit(g,[[1,2],[3,4]],OnTuplesTuples);
[ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 2, 3 ], [ 1, 4 ] ], [ [ 1, 3 ], [ 4, 2 ] ], 
  [ [ 3, 1 ], [ 2, 4 ] ], [ [ 3, 4 ], [ 1, 2 ] ], [ [ 2, 1 ], [ 4, 3 ] ], 
  [ [ 1, 4 ], [ 2, 3 ] ], [ [ 4, 1 ], [ 3, 2 ] ], [ [ 4, 2 ], [ 1, 3 ] ], 
  [ [ 3, 2 ], [ 4, 1 ] ], [ [ 2, 4 ], [ 3, 1 ] ], [ [ 4, 3 ], [ 2, 1 ] ] ]
\endexample

\Declaration{OnLines}
\beginexample
gap> gl:=GL(2,5);;v:=[1,0]*Z(5)^0;
[ Z(5)^0, 0*Z(5) ]
gap> h:=Action(gl,Orbit(gl,v,OnLines),OnLines);
Group([ (2,3,5,6), (1,2,4)(3,6,5) ])
\endexample

\Declaration{OnIndeterminates}!{as a permutation action}

\>Permuted( <list>, <perm> )!{as a permutation action}

The following example demonstrates `Permuted' being used to implement a 
permutation action on a domain:

\beginexample
gap> g:=Group((1,2,3),(1,2));;
gap> dom:=[ "a", "b", "c" ];;
gap> Orbit(g,dom,Permuted);
[ [ "a", "b", "c" ], [ "c", "a", "b" ], [ "b", "a", "c" ], [ "b", "c", "a" ], 
  [ "a", "c", "b" ], [ "c", "b", "a" ] ]
\endexample

\Declaration{OnSubspacesByCanonicalBasis}

\bigskip

If one needs an action for which no acting function is provided
by the library it can be implemented via a {\GAP} function that
conforms to the syntax

\)actfun(<omega>,<g>)

For example one could define the following function that acts on pairs of
polynomials via `OnIndeterminates':
\begintt
OnIndeterminatesPairs:=function(polypair,g)
  return [OnIndeterminates(polypair[1],g),
          OnIndeterminates(polypair[2],g)];
end;
\endtt

Note that this function *must* implement an action from the *right*. This is
not verified by {\GAP} and results are unpredicatble otherwise.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Orbits}

If <G> acts on <Omega> the set of all images of $\omega\in<Omega>$ under
elements of <G> is called the *orbit* of $\omega$. The set of orbits of <G>
is a partition of <Omega>.

Note that currently {\GAP} does *not* check whether a given point really
belongs to $\Omega$.
For example, consider the following example where the projective action
of a matrix group on a finite vector space shall be computed.

\beginexample
gap> Orbit( GL(2,3), [ -1, 0 ] * Z(3)^0, OnLines );
[ [ Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3) ], [ Z(3)^0, Z(3)^0 ], 
  [ 0*Z(3), Z(3)^0 ] ]
gap> Size( GL(2,3) ) / Length( last );
48/5
\endexample

The error is that `OnLines' (see~"OnLines") acts on the set of normed row
vectors (see~"NormedRowVectors") of the vector space in question,
but that the seed vector is itself not such a vector.

\Declaration{Orbit}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> Orbit(g,1);
[ 1, 3, 2, 4 ]
gap> Orbit(g,[1,2],OnSets);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 3, 4 ], [ 2, 4 ] ]
\endexample
(See Section~"Basic Actions" for information about specific actions.)

\Declaration{Orbits}!{operation/attribute}
\Declaration{OrbitsDomain}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> Orbits(g,[1..5]);
[ [ 1, 3, 2, 4 ], [ 5 ] ]
gap> OrbitsDomain(g,Arrangements([1..4],3),OnTuples);
[ [ [ 1, 2, 3 ], [ 3, 1, 2 ], [ 1, 4, 2 ], [ 2, 3, 1 ], [ 2, 1, 4 ], 
      [ 3, 4, 1 ], [ 1, 3, 4 ], [ 4, 2, 1 ], [ 4, 1, 3 ], [ 2, 4, 3 ], 
      [ 3, 2, 4 ], [ 4, 3, 2 ] ], 
  [ [ 1, 2, 4 ], [ 3, 1, 4 ], [ 1, 4, 3 ], [ 2, 3, 4 ], [ 2, 1, 3 ], 
      [ 3, 4, 2 ], [ 1, 3, 2 ], [ 4, 2, 3 ], [ 4, 1, 2 ], [ 2, 4, 1 ], 
      [ 3, 2, 1 ], [ 4, 3, 1 ] ] ]
gap> OrbitsDomain(g,GF(2)^2,[(1,2,3),(1,4)(2,3)],
> [[[Z(2)^0,Z(2)^0],[Z(2)^0,0*Z(2)]],[[Z(2)^0,0*Z(2)],[0*Z(2),Z(2)^0]]]);
[ [ <an immutable GF2 vector of length 2> ], 
  [ <an immutable GF2 vector of length 2>, <an immutable GF2 vector of length 
        2>, <an immutable GF2 vector of length 2> ] ]
\endexample
(See Section~"Basic Actions" for information about specific actions.)

\Declaration{OrbitLength}
\Declaration{OrbitLengths}
\Declaration{OrbitLengthsDomain}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> OrbitLength(g,[1,2,3,4],OnTuples);
12
gap> OrbitLengths(g,Arrangements([1..4],4),OnTuples);
[ 12, 12 ]
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Stabilizers}

\index{point stabilizer}\index{set stabilizer}\index{tuple stabilizer}
The *Stabilizer* of an element $\omega$ is the set of all those $g\in G$
which fix $\omega$.


\Declaration{OrbitStabilizer}
\Declaration{Stabilizer}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> Stabilizer(g,4);
Group([ (1,3,2) ])
\endexample

The stabilizer of a set or tuple of points can be computed by specifying an
action of sets or tuples of points.
\beginexample
gap> Stabilizer(g,[1,2],OnSets);
Group([ (1,2)(3,4) ])
gap> Stabilizer(g,[1,2],OnTuples);
Group(())
gap> OrbitStabilizer(g,[1,2],OnSets);
rec( orbit := [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 3, 4 ], [ 2, 4 ] ], 
  stabilizer := Group([ (1,2)(3,4) ]) )
\endexample
(See Section~"Basic Actions" for information about specific actions.)

The standard methods for all these actions are an Orbit-Stabilizer
algorithm. For permutation groups backtrack algorithms are used. For
solvable groups an orbit-stabilizer algorithm for solvable groups, which
uses the fact that the orbits of a normal subgroup form a block system (see
\cite{SOGOS}) is used.

\Declaration{OrbitStabilizerAlgorithm}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Elements with Prescribed Images}

\index{transporter}
\Declaration{RepresentativeAction}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> RepresentativeAction(g,1,3);
(1,3)(2,4)
gap> RepresentativeAction(g,1,3,OnPoints);
(1,3)(2,4)
gap> RepresentativeAction(g,(1,2,3),(2,4,3));
(1,2,4)
gap> RepresentativeAction(g,(1,2,3),(2,3,4));
fail
gap> RepresentativeAction(g,Group((1,2,3)),Group((2,3,4)));
(1,2,4)
gap>  RepresentativeAction(g,[1,2,3],[1,2,4],OnSets);
(2,4,3)
gap>  RepresentativeAction(g,[1,2,3],[1,2,4],OnTuples);
fail
\endexample
(See Section~"Basic Actions" for information about specific actions.)

Again the standard method for `RepresentativeAction' is an orbit-stabilizer
algorithm, for permutation groups and standard actions a backtrack algorithm
is used.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{The Permutation Image of an Action}

If $G$ acts on a domain <Omega>, an enumeration of <Omega> yields a
homomorphism of $G$ into the symmetric group on $\{1,\ldots,|<Omega>|\}$. In
{\GAP}, the enumeration of the domain <Omega> is provided by the
`Enumerator' of <Omega> (see~"Enumerator") which of course is <Omega> itself
if it is a list.

\Declaration{ActionHomomorphism}
(See Section~"Basic Actions" for information about specific actions.)
\beginexample
gap> g:=Group((1,2,3),(1,2));;
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);
<action homomorphism>
gap> Image(hom);
Group([ (1,9,13)(2,10,14)(3,7,15)(4,8,16)(5,12,17)(6,11,18)(19,22,23)(20,21,
    24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,15)(14,16)(17,18)(19,21)(20,
    22)(23,24) ])
gap> Size(Range(hom));Size(Image(hom));
620448401733239439360000
6
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples,
> "surjective");;
gap> Size(Range(hom));
6
\endexample

When acting on a domain, the operation `PositionCanonical' is used to
determine the position of elements in the domain.  This can be used to act
on a domain given by a list of representatives for which `PositionCanonical'
is implemented, for example a `RightTransversal' (see "RightTransversal").

\Declaration{Action}
(See Section~"Basic Actions" for information about specific actions.)
\index{regular action}
The following code shows for example how to create the regular action of a
group:
\beginexample
gap> g:=Group((1,2,3),(1,2));;
gap> Action(g,AsList(g),OnRight);
Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6) ])
\endexample

\Declaration{SparseActionHomomorphism}
\beginexample
gap> h:=Group(Z(3)*[[[1,1],[0,1]]]);
Group([ [ [ Z(3), Z(3) ], [ 0*Z(3), Z(3) ] ] ])
gap> hom:=ActionHomomorphism(h,GF(3)^2,OnRight);;
gap> Image(hom);
Group([ (2,3)(4,9,6,7,5,8) ])
gap> hom:=SparseActionHomomorphism(h,[Z(3)*[1,0]],OnRight);;
gap> Image(hom);
Group([ (1,2,3,4,5,6) ])
\endexample

For an action homomorphism, the operation `UnderlyingExternalSet'
(see~"UnderlyingExternalSet") will return the external set on <Omega> which
affords the action.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Action of a group on itself}

Of particular importance is the action of a group on its elements or cosets
of a subgroup. These actions can be obtained by using `ActionHomomorphism'
for a suitable domain (for example a list of subgroups). For the following
(frequently used) types of actions however special (often particularly
efficient) functions are provided:

\Declaration{FactorCosetAction}

\beginexample
gap> g:=Group((1,2,3,4,5),(1,2));;u:=SylowSubgroup(g,2);;Index(g,u);
15
gap> FactorCosetAction(g,u);
<action epimorphism>
gap> Range(last);
Group([ (1,9,13,10,4)(2,8,14,11,5)(3,7,15,12,6), 
  (1,7)(2,8)(3,9)(5,6)(10,11)(14,15) ])
\endexample

A special case is the regular action on all elements:
\Declaration{RegularActionHomomorphism}

\Declaration{AbelianSubfactorAction}
\beginexample
gap> g:=Group((1,8,10,7,3,5)(2,4,12,9,11,6),(1,9,5,6,3,10)(2,11,12,8,4,7));;
gap> c:=ChiefSeries(g);;List(c,Size);
[ 96, 48, 16, 4, 1 ]
gap> HasElementaryAbelianFactorGroup(c[3],c[4]);
true
gap> SetName(c[3],"my_group");;
gap> a:=AbelianSubfactorAction(g,c[3],c[4]);
[ [ (1,8,10,7,3,5)(2,4,12,9,11,6), (1,9,5,6,3,10)(2,11,12,8,4,7) ] -> 
    [ <an immutable 2x2 matrix over GF2>, <an immutable 2x2 matrix over GF2> ]
    , MappingByFunction( my_group, ( GF(2)^
    2 ), function( e ) ... end, function( r ) ... end ), 
  Pcgs([ (2,8,3,9)(4,10,5,11), (1,6,12,7)(4,10,5,11) ]) ]
gap> mat:=Image(a[1],g);
Group([ <an immutable 2x2 matrix over GF2>, 
  <an immutable 2x2 matrix over GF2> ])
gap> Size(mat);
3
gap> e:=PreImagesRepresentative(a[2],[Z(2),0*Z(2)]);
(2,8,3,9)(4,10,5,11)
gap> e in c[3];e in c[4];
true
false
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Permutations Induced by Elements and Cycles}

If only the permutation image of a single element is needed, it might not be
worth to create the action homomorphism, the following operations yield the
permutation image and cycles of a single element.

\Declaration{Permutation}
\Declaration{PermutationCycle}
\beginexample
gap> Permutation([[Z(3),-Z(3)],[Z(3),0*Z(3)]],AsList(GF(3)^2));
(2,7,6)(3,4,8)
gap> Permutation((1,2,3)(4,5)(6,7),[4..7]);
(1,2)(3,4)
gap> PermutationCycle((1,2,3)(4,5)(6,7),[4..7],4);
(1,2)
\endexample
\Declaration{Cycle}
\Declaration{CycleLength}
\Declaration{Cycles}
\Declaration{CycleLengths}
\beginexample
gap> Cycle((1,2,3)(4,5)(6,7),[4..7],4);
[ 4, 5 ]
gap> CycleLength((1,2,3)(4,5)(6,7),[4..7],4);
2
gap> Cycles((1,2,3)(4,5)(6,7),[4..7]);
[ [ 4, 5 ], [ 6, 7 ] ]
gap> CycleLengths((1,2,3)(4,5)(6,7),[4..7]);
[ 2, 2 ]
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Tests for Actions}

\Declaration{IsTransitive}[oprt]!{for group actions}
\Declaration{Transitivity}[oprt]!{for group actions}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> IsTransitive(g,[1..5]);
false
gap> Transitivity(g,[1..4]);
2
\endexample

*Note:* For permutation groups, the syntax `IsTransitive(<g>)' is also
permitted and tests whether the group is transitive on the points moved by
it, that is the group $\langle (2,3,4),(2,3)\rangle$ is transitive (on 3
points).

\Declaration{RankAction}
\beginexample
gap> RankAction(g,Combinations([1..4],2),OnSets);
4
\endexample
\Declaration{IsSemiRegular}
\Declaration{IsRegular}
\beginexample
gap> IsSemiRegular(g,Arrangements([1..4],3),OnTuples);
true
gap> IsRegular(g,Arrangements([1..4],3),OnTuples);
false
\endexample
\Declaration{Earns}

\Declaration{IsPrimitive}
\beginexample
gap> IsPrimitive(g,Orbit(g,(1,2)(3,4)));
true
\endexample
%\declaration{IsFixpointFree}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Block Systems}

A *block system* (system of imprimitivity) for the action of <G> on <Omega>
is a partition of <Omega> which -- as a partition -- remains invariant under
the action of <G>.

\Declaration{Blocks}
\beginexample
gap> g:=TransitiveGroup(8,3);
E(8)=2[x]2[x]2
gap> Blocks(g,[1..8]);
[ [ 1, 8 ], [ 2, 3 ], [ 4, 5 ], [ 6, 7 ] ]
gap> Blocks(g,[1..8],[1,4]);
[ [ 1, 4 ], [ 2, 7 ], [ 3, 6 ], [ 5, 8 ] ]
\endexample
(See Section~"Basic Actions" for information about specific actions.)

\Declaration{MaximalBlocks}
\beginexample
gap> MaximalBlocks(g,[1..8]);
[ [ 1, 2, 3, 8 ], [ 4, 5, 6, 7 ] ]
\endexample

\Declaration{RepresentativesMinimalBlocks}
\beginexample
gap> RepresentativesMinimalBlocks(g,[1..8]);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 5 ], [ 1, 6 ], [ 1, 7 ], [ 1, 8 ] ]
\endexample

\Declaration{AllBlocks}
\beginexample
gap> AllBlocks(g);
[ [ 1, 8 ], [ 1, 2, 3, 8 ], [ 1, 4, 5, 8 ], [ 1, 6, 7, 8 ], [ 1, 3 ], 
  [ 1, 3, 5, 7 ], [ 1, 3, 4, 6 ], [ 1, 5 ], [ 1, 2, 5, 6 ], [ 1, 2 ], 
  [ 1, 2, 4, 7 ], [ 1, 4 ], [ 1, 7 ], [ 1, 6 ] ]
\endexample

The stabilizer of a block can be computed via the action
`OnSets' (see~"OnSets"):
\beginexample
gap> Stabilizer(g,[1,8],OnSets);
Group([ (1,8)(2,3)(4,5)(6,7) ])
\endexample

If <bs> is a partition of <omega>, given as a set of sets, the stabilizer
under the action `OnSetsDisjointSets' (see~"OnSetsDisjointSets") returns the
largest subgroup which preserves <bs> as a block system.
\beginexample
gap> g:=Group((1,2,3,4,5,6,7,8),(1,2));;
gap> bs:=[[1,2,3,4],[5,6,7,8]];;
gap> Stabilizer(g,bs,OnSetsDisjointSets);
Group([ (6,7), (5,6), (5,8), (2,3), (3,4)(5,7), (1,4), (1,5,4,8)(2,6,3,7) ])
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{External Sets}

\atindex{G-sets}{@$G$-sets}
When considering group actions, sometimes the concept of a *$G$-set* is
used. This is the set <Omega> endowed with an action of $G$. The elements
of the $G$-set are the same as those of <Omega>, however concepts like
equality and equivalence of $G$-sets do not only consider the underlying
domain <Omega> but the group action as well.

This concept is implemented in {\GAP} via *external sets*.
\Declaration{IsExternalSet}

\Declaration{ExternalSet}
\beginexample
gap> g:=Group((1,2,3),(2,3,4));;
gap> e:=ExternalSet(g,[1..4]);
<xset:[ 1, 2, 3, 4 ]>
gap> e:=ExternalSet(g,g,OnRight);
<xset:<enumerator of perm group>>
gap> Orbits(e);
[ [ (), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,4,3), (1,4,2), (1,2,3), 
      (1,3,4), (2,3,4), (1,3,2), (1,4,3), (1,2,4) ] ]
\endexample

The following three attributes of an external set hold its constituents.
\Declaration{ActingDomain}
\Declaration{FunctionAction}
\Declaration{HomeEnumerator}
\beginexample
gap> ActingDomain(e);
Group([ (1,2,3), (2,3,4) ])
gap> FunctionAction(e)=OnRight;
true
gap> HomeEnumerator(e);
<enumerator of perm group>
\endexample

Most operations for actions are applicable as an attribute for an external
set.

\Declaration{IsExternalSubset}
The most prominent external subsets are orbits:
\Declaration{ExternalSubset}
\Declaration{IsExternalOrbit}
\Declaration{ExternalOrbit}
\beginexample
gap> e:=ExternalOrbit(g,g,(1,2,3));
(1,2,3)^G
\endexample

Many subsets of a group, such as conjugacy classes or cosets
(see~"ConjugacyClass" and "RightCoset") are implemented as external orbits.

\Declaration{StabilizerOfExternalSet}
\beginexample
gap> Representative(e);
(1,2,3)
gap> StabilizerOfExternalSet(e);
Group([ (1,2,3) ])
\endexample

\Declaration{ExternalOrbits}
\beginexample
gap> ExternalOrbits(g,AsList(g));
[ ()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G ]
\endexample

\Declaration{ExternalOrbitsStabilizers}
\beginexample
gap> e:=ExternalOrbitsStabilizers(g,AsList(g));
[ ()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G ]
gap> HasStabilizerOfExternalSet(e[3]);
true
gap> StabilizerOfExternalSet(e[3]);
Group([ (2,4,3) ])
\endexample

\Declaration{CanonicalRepresentativeOfExternalSet}
\Declaration{CanonicalRepresentativeDeterminatorOfExternalSet}
\Declaration{ActorOfExternalSet}
\beginexample
gap> u:=Subgroup(g,[(1,2,3)]);;
gap> e:=RightCoset(u,(1,2)(3,4));;
gap> CanonicalRepresentativeOfExternalSet(e);
(2,4,3)
gap> ActorOfExternalSet(e);
(1,3,2)
gap> FunctionAction(e)((1,2)(3,4),last);
(2,4,3)
\endexample

External sets also are implicitly underlying action homomorphisms:

\Declaration{UnderlyingExternalSet}
\beginexample
gap> g:=Group((1,2,3),(1,2));;
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);;
gap> s:=UnderlyingExternalSet(hom);
<xset:[[ 1, 2, 3 ],[ 1, 2, 4 ],[ 1, 3, 2 ],[ 1, 3, 4 ],[ 1, 4, 2 ],
[ 1, 4, 3 ],[ 2, 1, 3 ],[ 2, 1, 4 ],[ 2, 3, 1 ],[ 2, 3, 4 ],[ 2, 4, 1 ],
[ 2, 4, 3 ],[ 3, 1, 2 ],[ 3, 1, 4 ],[ 3, 2, 1 ], ...]>
gap> Print(s,"\n");
[ [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 3, 2 ], [ 1, 3, 4 ], [ 1, 4, 2 ], 
  [ 1, 4, 3 ], [ 2, 1, 3 ], [ 2, 1, 4 ], [ 2, 3, 1 ], [ 2, 3, 4 ], 
  [ 2, 4, 1 ], [ 2, 4, 3 ], [ 3, 1, 2 ], [ 3, 1, 4 ], [ 3, 2, 1 ], 
  [ 3, 2, 4 ], [ 3, 4, 1 ], [ 3, 4, 2 ], [ 4, 1, 2 ], [ 4, 1, 3 ], 
  [ 4, 2, 1 ], [ 4, 2, 3 ], [ 4, 3, 1 ], [ 4, 3, 2 ] ]
\endexample

\Declaration{SurjectiveActionHomomorphismAttr}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E