1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A grpoper.msk GAP documentation Alexander Hulpke
%A Heiko Theissen
%%
%A @(#)$Id: grpoper.msk,v 1.46.2.1 2005/05/09 07:37:51 gap Exp $
%%
%Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
%Y Copyright (C) 2002 The GAP Group
%%
\Chapter{Group Actions}
\index{group actions}\atindex{G-sets}{@$G$-sets}
A *group action* is a triple $(G,<Omega>,\mu)$, where $G$ is a group,
<Omega> a set and $\mu\colon<Omega>\times G\to<Omega>$ a function (whose
action is compatible with the group arithmetic). We call <Omega> the
*domain* of the action.
In {\GAP}, <Omega> can be a duplicate-free collection (an object that
permits access to its elements via the <Omega>[<n>] operation, for example a
list), it does not need to be sorted (see~"IsSet").
The acting function $\mu$ is a {\GAP} function of the form
\){\kernttindent}actfun(<pnt>,<g>)
that returns the image $\mu(<pnt>,<g>)$ for a point $<pnt>\in<Omega>$ and a
group element $<g>\in<G>$.
Groups always acts from the right, that is
$\mu(\mu(<pnt>,<g>),<h>)=\mu(<pnt>,<gh>)$.
{\GAP} does not test whether an acting function `actfun' satisfies the
conditions for a group operation but silently assumes that is does.
(If it does not, results are unpredictable.)
The first section of this chapter, "About Group Actions", describes the
various ways how operations for group actions can be called.
Functions for several commonly used action are already built into {\GAP}.
These are listed in section~"Basic Actions".
The sections "The Permutation Image of an Action" and
"Action of a group on itself" describe homomorphisms and mappings associated
to group actions as well as the permutation group image of an action.
The other sections then describe operations to compute orbits,
stabilizers, as well as
properties of actions.
Finally section~"External Sets" describes the concept of ``external sets''
which represent the concept of a *$G$-set* and underly the actions mechanism.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{About Group Actions}
\index{group actions!operations syntax}
The syntax which is used by the operations for group actions is quite
flexible. For example we can call the operation `OrbitsDomain' for the orbits
of the group <G> on the domain <Omega> in the following ways:
\)OrbitsDomain(<G>,<Omega>[,<actfun>])
The acting function <actfun> is optional. If it is not given, the built-in
action `OnPoints' (which defines an action via the caret operator `^') is
used as a default.
\)OrbitsDomain(<G>,<Omega>,<gens>,<acts>[,<actfun>])
This second version (of `OrbitsDomain') permits one to implement an action
induced by a homomorphism:
If <H> acts on <Omega> via $\mu$ and $\varphi\colon G\to H$ is a
homomorphism, <G> acts on <Omega> via
$\mu'(\omega,g)=\mu(\omega,g^{\varphi})$:
Here <gens> must be a set of generators of <G> and <acts> the images of
<gens> under a homomorphism $\varphi\colon G\to H$.
<actfun> is the acting function for <H>, the call
to `ExampleActionFunction' implements the induced action of <G>.
Again, the acting function <actfun> is optional and `OnPoints' is used as a
default.
The advantage of this notation is that {\GAP} does not need to construct
this homomorphism $\varphi$ and the range group <H> as {\GAP} objects. (If a
small group <G> acts via complicated objects <acts> this otherwise could
lead to performance problems.)
{\GAP} does not test whether the mapping $<gens>\mapsto<acts>$
actually induces a homomorphism and the results are unpredictable if this is
not the case.
\)OrbitsDomain(<extset>) A
A third variant is to call the operation with an external set (which then
provides <G>, <Omega> and <actfun>. You will find more about external sets in
section~"External Sets".
For operations like `Stabilizer' of course the domain must be replaced by an
element of <Omega> which is to be acted on.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Basic Actions}
\index{group actions}
\index{actions}
\index{group operations}
{\GAP} already provides acting functions for the more common actions of a
group. For built-in operations such as `Stabilizer' special methods are
available for many of these actions.
This section also shows how to implement different actions. (Note that every
action must be from the right.)
\Declaration{OnPoints}
\Declaration{OnRight}
\Declaration{OnLeftInverse}
\Declaration{OnSets}
\Declaration{OnTuples}
\Declaration{OnPairs}
\Declaration{OnSetsSets}
\Declaration{OnSetsDisjointSets}
\Declaration{OnSetsTuples}
\Declaration{OnTuplesSets}
\Declaration{OnTuplesTuples}
\beginexample
gap> g:=Group((1,2,3),(2,3,4));;
gap> Orbit(g,1,OnPoints);
[ 1, 2, 3, 4 ]
gap> Orbit(g,(),OnRight);
[ (), (1,2,3), (2,3,4), (1,3,2), (1,3)(2,4), (1,2)(3,4), (2,4,3), (1,4,2),
(1,4,3), (1,3,4), (1,2,4), (1,4)(2,3) ]
gap> Orbit(g,[1,2],OnPairs);
[ [ 1, 2 ], [ 2, 3 ], [ 1, 3 ], [ 3, 1 ], [ 3, 4 ], [ 2, 1 ], [ 1, 4 ],
[ 4, 1 ], [ 4, 2 ], [ 3, 2 ], [ 2, 4 ], [ 4, 3 ] ]
gap> Orbit(g,[1,2],OnSets);
[ [ 1, 2 ], [ 2, 3 ], [ 1, 3 ], [ 3, 4 ], [ 1, 4 ], [ 2, 4 ] ]
\endexample
\beginexample
gap> Orbit(g,[[1,2],[3,4]],OnSetsSets);
[ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 1, 4 ], [ 2, 3 ] ], [ [ 1, 3 ], [ 2, 4 ] ] ]
gap> Orbit(g,[[1,2],[3,4]],OnTuplesSets);
[ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 2, 3 ], [ 1, 4 ] ], [ [ 1, 3 ], [ 2, 4 ] ],
[ [ 3, 4 ], [ 1, 2 ] ], [ [ 1, 4 ], [ 2, 3 ] ], [ [ 2, 4 ], [ 1, 3 ] ] ]
gap> Orbit(g,[[1,2],[3,4]],OnSetsTuples);
[ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 1, 4 ], [ 2, 3 ] ], [ [ 1, 3 ], [ 4, 2 ] ],
[ [ 2, 4 ], [ 3, 1 ] ], [ [ 2, 1 ], [ 4, 3 ] ], [ [ 3, 2 ], [ 4, 1 ] ] ]
gap> Orbit(g,[[1,2],[3,4]],OnTuplesTuples);
[ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 2, 3 ], [ 1, 4 ] ], [ [ 1, 3 ], [ 4, 2 ] ],
[ [ 3, 1 ], [ 2, 4 ] ], [ [ 3, 4 ], [ 1, 2 ] ], [ [ 2, 1 ], [ 4, 3 ] ],
[ [ 1, 4 ], [ 2, 3 ] ], [ [ 4, 1 ], [ 3, 2 ] ], [ [ 4, 2 ], [ 1, 3 ] ],
[ [ 3, 2 ], [ 4, 1 ] ], [ [ 2, 4 ], [ 3, 1 ] ], [ [ 4, 3 ], [ 2, 1 ] ] ]
\endexample
\Declaration{OnLines}
\beginexample
gap> gl:=GL(2,5);;v:=[1,0]*Z(5)^0;
[ Z(5)^0, 0*Z(5) ]
gap> h:=Action(gl,Orbit(gl,v,OnLines),OnLines);
Group([ (2,3,5,6), (1,2,4)(3,6,5) ])
\endexample
\Declaration{OnIndeterminates}!{as a permutation action}
\>Permuted( <list>, <perm> )!{as a permutation action}
The following example demonstrates `Permuted' being used to implement a
permutation action on a domain:
\beginexample
gap> g:=Group((1,2,3),(1,2));;
gap> dom:=[ "a", "b", "c" ];;
gap> Orbit(g,dom,Permuted);
[ [ "a", "b", "c" ], [ "c", "a", "b" ], [ "b", "a", "c" ], [ "b", "c", "a" ],
[ "a", "c", "b" ], [ "c", "b", "a" ] ]
\endexample
\Declaration{OnSubspacesByCanonicalBasis}
\bigskip
If one needs an action for which no acting function is provided
by the library it can be implemented via a {\GAP} function that
conforms to the syntax
\)actfun(<omega>,<g>)
For example one could define the following function that acts on pairs of
polynomials via `OnIndeterminates':
\begintt
OnIndeterminatesPairs:=function(polypair,g)
return [OnIndeterminates(polypair[1],g),
OnIndeterminates(polypair[2],g)];
end;
\endtt
Note that this function *must* implement an action from the *right*. This is
not verified by {\GAP} and results are unpredicatble otherwise.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Orbits}
If <G> acts on <Omega> the set of all images of $\omega\in<Omega>$ under
elements of <G> is called the *orbit* of $\omega$. The set of orbits of <G>
is a partition of <Omega>.
Note that currently {\GAP} does *not* check whether a given point really
belongs to $\Omega$.
For example, consider the following example where the projective action
of a matrix group on a finite vector space shall be computed.
\beginexample
gap> Orbit( GL(2,3), [ -1, 0 ] * Z(3)^0, OnLines );
[ [ Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3) ], [ Z(3)^0, Z(3)^0 ],
[ 0*Z(3), Z(3)^0 ] ]
gap> Size( GL(2,3) ) / Length( last );
48/5
\endexample
The error is that `OnLines' (see~"OnLines") acts on the set of normed row
vectors (see~"NormedRowVectors") of the vector space in question,
but that the seed vector is itself not such a vector.
\Declaration{Orbit}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> Orbit(g,1);
[ 1, 3, 2, 4 ]
gap> Orbit(g,[1,2],OnSets);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 3, 4 ], [ 2, 4 ] ]
\endexample
(See Section~"Basic Actions" for information about specific actions.)
\Declaration{Orbits}!{operation/attribute}
\Declaration{OrbitsDomain}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> Orbits(g,[1..5]);
[ [ 1, 3, 2, 4 ], [ 5 ] ]
gap> OrbitsDomain(g,Arrangements([1..4],3),OnTuples);
[ [ [ 1, 2, 3 ], [ 3, 1, 2 ], [ 1, 4, 2 ], [ 2, 3, 1 ], [ 2, 1, 4 ],
[ 3, 4, 1 ], [ 1, 3, 4 ], [ 4, 2, 1 ], [ 4, 1, 3 ], [ 2, 4, 3 ],
[ 3, 2, 4 ], [ 4, 3, 2 ] ],
[ [ 1, 2, 4 ], [ 3, 1, 4 ], [ 1, 4, 3 ], [ 2, 3, 4 ], [ 2, 1, 3 ],
[ 3, 4, 2 ], [ 1, 3, 2 ], [ 4, 2, 3 ], [ 4, 1, 2 ], [ 2, 4, 1 ],
[ 3, 2, 1 ], [ 4, 3, 1 ] ] ]
gap> OrbitsDomain(g,GF(2)^2,[(1,2,3),(1,4)(2,3)],
> [[[Z(2)^0,Z(2)^0],[Z(2)^0,0*Z(2)]],[[Z(2)^0,0*Z(2)],[0*Z(2),Z(2)^0]]]);
[ [ <an immutable GF2 vector of length 2> ],
[ <an immutable GF2 vector of length 2>, <an immutable GF2 vector of length
2>, <an immutable GF2 vector of length 2> ] ]
\endexample
(See Section~"Basic Actions" for information about specific actions.)
\Declaration{OrbitLength}
\Declaration{OrbitLengths}
\Declaration{OrbitLengthsDomain}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> OrbitLength(g,[1,2,3,4],OnTuples);
12
gap> OrbitLengths(g,Arrangements([1..4],4),OnTuples);
[ 12, 12 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Stabilizers}
\index{point stabilizer}\index{set stabilizer}\index{tuple stabilizer}
The *Stabilizer* of an element $\omega$ is the set of all those $g\in G$
which fix $\omega$.
\Declaration{OrbitStabilizer}
\Declaration{Stabilizer}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> Stabilizer(g,4);
Group([ (1,3,2) ])
\endexample
The stabilizer of a set or tuple of points can be computed by specifying an
action of sets or tuples of points.
\beginexample
gap> Stabilizer(g,[1,2],OnSets);
Group([ (1,2)(3,4) ])
gap> Stabilizer(g,[1,2],OnTuples);
Group(())
gap> OrbitStabilizer(g,[1,2],OnSets);
rec( orbit := [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 3, 4 ], [ 2, 4 ] ],
stabilizer := Group([ (1,2)(3,4) ]) )
\endexample
(See Section~"Basic Actions" for information about specific actions.)
The standard methods for all these actions are an Orbit-Stabilizer
algorithm. For permutation groups backtrack algorithms are used. For
solvable groups an orbit-stabilizer algorithm for solvable groups, which
uses the fact that the orbits of a normal subgroup form a block system (see
\cite{SOGOS}) is used.
\Declaration{OrbitStabilizerAlgorithm}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Elements with Prescribed Images}
\index{transporter}
\Declaration{RepresentativeAction}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> RepresentativeAction(g,1,3);
(1,3)(2,4)
gap> RepresentativeAction(g,1,3,OnPoints);
(1,3)(2,4)
gap> RepresentativeAction(g,(1,2,3),(2,4,3));
(1,2,4)
gap> RepresentativeAction(g,(1,2,3),(2,3,4));
fail
gap> RepresentativeAction(g,Group((1,2,3)),Group((2,3,4)));
(1,2,4)
gap> RepresentativeAction(g,[1,2,3],[1,2,4],OnSets);
(2,4,3)
gap> RepresentativeAction(g,[1,2,3],[1,2,4],OnTuples);
fail
\endexample
(See Section~"Basic Actions" for information about specific actions.)
Again the standard method for `RepresentativeAction' is an orbit-stabilizer
algorithm, for permutation groups and standard actions a backtrack algorithm
is used.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{The Permutation Image of an Action}
If $G$ acts on a domain <Omega>, an enumeration of <Omega> yields a
homomorphism of $G$ into the symmetric group on $\{1,\ldots,|<Omega>|\}$. In
{\GAP}, the enumeration of the domain <Omega> is provided by the
`Enumerator' of <Omega> (see~"Enumerator") which of course is <Omega> itself
if it is a list.
\Declaration{ActionHomomorphism}
(See Section~"Basic Actions" for information about specific actions.)
\beginexample
gap> g:=Group((1,2,3),(1,2));;
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);
<action homomorphism>
gap> Image(hom);
Group([ (1,9,13)(2,10,14)(3,7,15)(4,8,16)(5,12,17)(6,11,18)(19,22,23)(20,21,
24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,15)(14,16)(17,18)(19,21)(20,
22)(23,24) ])
gap> Size(Range(hom));Size(Image(hom));
620448401733239439360000
6
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples,
> "surjective");;
gap> Size(Range(hom));
6
\endexample
When acting on a domain, the operation `PositionCanonical' is used to
determine the position of elements in the domain. This can be used to act
on a domain given by a list of representatives for which `PositionCanonical'
is implemented, for example a `RightTransversal' (see "RightTransversal").
\Declaration{Action}
(See Section~"Basic Actions" for information about specific actions.)
\index{regular action}
The following code shows for example how to create the regular action of a
group:
\beginexample
gap> g:=Group((1,2,3),(1,2));;
gap> Action(g,AsList(g),OnRight);
Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6) ])
\endexample
\Declaration{SparseActionHomomorphism}
\beginexample
gap> h:=Group(Z(3)*[[[1,1],[0,1]]]);
Group([ [ [ Z(3), Z(3) ], [ 0*Z(3), Z(3) ] ] ])
gap> hom:=ActionHomomorphism(h,GF(3)^2,OnRight);;
gap> Image(hom);
Group([ (2,3)(4,9,6,7,5,8) ])
gap> hom:=SparseActionHomomorphism(h,[Z(3)*[1,0]],OnRight);;
gap> Image(hom);
Group([ (1,2,3,4,5,6) ])
\endexample
For an action homomorphism, the operation `UnderlyingExternalSet'
(see~"UnderlyingExternalSet") will return the external set on <Omega> which
affords the action.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Action of a group on itself}
Of particular importance is the action of a group on its elements or cosets
of a subgroup. These actions can be obtained by using `ActionHomomorphism'
for a suitable domain (for example a list of subgroups). For the following
(frequently used) types of actions however special (often particularly
efficient) functions are provided:
\Declaration{FactorCosetAction}
\beginexample
gap> g:=Group((1,2,3,4,5),(1,2));;u:=SylowSubgroup(g,2);;Index(g,u);
15
gap> FactorCosetAction(g,u);
<action epimorphism>
gap> Range(last);
Group([ (1,9,13,10,4)(2,8,14,11,5)(3,7,15,12,6),
(1,7)(2,8)(3,9)(5,6)(10,11)(14,15) ])
\endexample
A special case is the regular action on all elements:
\Declaration{RegularActionHomomorphism}
\Declaration{AbelianSubfactorAction}
\beginexample
gap> g:=Group((1,8,10,7,3,5)(2,4,12,9,11,6),(1,9,5,6,3,10)(2,11,12,8,4,7));;
gap> c:=ChiefSeries(g);;List(c,Size);
[ 96, 48, 16, 4, 1 ]
gap> HasElementaryAbelianFactorGroup(c[3],c[4]);
true
gap> SetName(c[3],"my_group");;
gap> a:=AbelianSubfactorAction(g,c[3],c[4]);
[ [ (1,8,10,7,3,5)(2,4,12,9,11,6), (1,9,5,6,3,10)(2,11,12,8,4,7) ] ->
[ <an immutable 2x2 matrix over GF2>, <an immutable 2x2 matrix over GF2> ]
, MappingByFunction( my_group, ( GF(2)^
2 ), function( e ) ... end, function( r ) ... end ),
Pcgs([ (2,8,3,9)(4,10,5,11), (1,6,12,7)(4,10,5,11) ]) ]
gap> mat:=Image(a[1],g);
Group([ <an immutable 2x2 matrix over GF2>,
<an immutable 2x2 matrix over GF2> ])
gap> Size(mat);
3
gap> e:=PreImagesRepresentative(a[2],[Z(2),0*Z(2)]);
(2,8,3,9)(4,10,5,11)
gap> e in c[3];e in c[4];
true
false
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Permutations Induced by Elements and Cycles}
If only the permutation image of a single element is needed, it might not be
worth to create the action homomorphism, the following operations yield the
permutation image and cycles of a single element.
\Declaration{Permutation}
\Declaration{PermutationCycle}
\beginexample
gap> Permutation([[Z(3),-Z(3)],[Z(3),0*Z(3)]],AsList(GF(3)^2));
(2,7,6)(3,4,8)
gap> Permutation((1,2,3)(4,5)(6,7),[4..7]);
(1,2)(3,4)
gap> PermutationCycle((1,2,3)(4,5)(6,7),[4..7],4);
(1,2)
\endexample
\Declaration{Cycle}
\Declaration{CycleLength}
\Declaration{Cycles}
\Declaration{CycleLengths}
\beginexample
gap> Cycle((1,2,3)(4,5)(6,7),[4..7],4);
[ 4, 5 ]
gap> CycleLength((1,2,3)(4,5)(6,7),[4..7],4);
2
gap> Cycles((1,2,3)(4,5)(6,7),[4..7]);
[ [ 4, 5 ], [ 6, 7 ] ]
gap> CycleLengths((1,2,3)(4,5)(6,7),[4..7]);
[ 2, 2 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Tests for Actions}
\Declaration{IsTransitive}[oprt]!{for group actions}
\Declaration{Transitivity}[oprt]!{for group actions}
\beginexample
gap> g:=Group((1,3,2),(2,4,3));;
gap> IsTransitive(g,[1..5]);
false
gap> Transitivity(g,[1..4]);
2
\endexample
*Note:* For permutation groups, the syntax `IsTransitive(<g>)' is also
permitted and tests whether the group is transitive on the points moved by
it, that is the group $\langle (2,3,4),(2,3)\rangle$ is transitive (on 3
points).
\Declaration{RankAction}
\beginexample
gap> RankAction(g,Combinations([1..4],2),OnSets);
4
\endexample
\Declaration{IsSemiRegular}
\Declaration{IsRegular}
\beginexample
gap> IsSemiRegular(g,Arrangements([1..4],3),OnTuples);
true
gap> IsRegular(g,Arrangements([1..4],3),OnTuples);
false
\endexample
\Declaration{Earns}
\Declaration{IsPrimitive}
\beginexample
gap> IsPrimitive(g,Orbit(g,(1,2)(3,4)));
true
\endexample
%\declaration{IsFixpointFree}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Block Systems}
A *block system* (system of imprimitivity) for the action of <G> on <Omega>
is a partition of <Omega> which -- as a partition -- remains invariant under
the action of <G>.
\Declaration{Blocks}
\beginexample
gap> g:=TransitiveGroup(8,3);
E(8)=2[x]2[x]2
gap> Blocks(g,[1..8]);
[ [ 1, 8 ], [ 2, 3 ], [ 4, 5 ], [ 6, 7 ] ]
gap> Blocks(g,[1..8],[1,4]);
[ [ 1, 4 ], [ 2, 7 ], [ 3, 6 ], [ 5, 8 ] ]
\endexample
(See Section~"Basic Actions" for information about specific actions.)
\Declaration{MaximalBlocks}
\beginexample
gap> MaximalBlocks(g,[1..8]);
[ [ 1, 2, 3, 8 ], [ 4, 5, 6, 7 ] ]
\endexample
\Declaration{RepresentativesMinimalBlocks}
\beginexample
gap> RepresentativesMinimalBlocks(g,[1..8]);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 5 ], [ 1, 6 ], [ 1, 7 ], [ 1, 8 ] ]
\endexample
\Declaration{AllBlocks}
\beginexample
gap> AllBlocks(g);
[ [ 1, 8 ], [ 1, 2, 3, 8 ], [ 1, 4, 5, 8 ], [ 1, 6, 7, 8 ], [ 1, 3 ],
[ 1, 3, 5, 7 ], [ 1, 3, 4, 6 ], [ 1, 5 ], [ 1, 2, 5, 6 ], [ 1, 2 ],
[ 1, 2, 4, 7 ], [ 1, 4 ], [ 1, 7 ], [ 1, 6 ] ]
\endexample
The stabilizer of a block can be computed via the action
`OnSets' (see~"OnSets"):
\beginexample
gap> Stabilizer(g,[1,8],OnSets);
Group([ (1,8)(2,3)(4,5)(6,7) ])
\endexample
If <bs> is a partition of <omega>, given as a set of sets, the stabilizer
under the action `OnSetsDisjointSets' (see~"OnSetsDisjointSets") returns the
largest subgroup which preserves <bs> as a block system.
\beginexample
gap> g:=Group((1,2,3,4,5,6,7,8),(1,2));;
gap> bs:=[[1,2,3,4],[5,6,7,8]];;
gap> Stabilizer(g,bs,OnSetsDisjointSets);
Group([ (6,7), (5,6), (5,8), (2,3), (3,4)(5,7), (1,4), (1,5,4,8)(2,6,3,7) ])
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{External Sets}
\atindex{G-sets}{@$G$-sets}
When considering group actions, sometimes the concept of a *$G$-set* is
used. This is the set <Omega> endowed with an action of $G$. The elements
of the $G$-set are the same as those of <Omega>, however concepts like
equality and equivalence of $G$-sets do not only consider the underlying
domain <Omega> but the group action as well.
This concept is implemented in {\GAP} via *external sets*.
\Declaration{IsExternalSet}
\Declaration{ExternalSet}
\beginexample
gap> g:=Group((1,2,3),(2,3,4));;
gap> e:=ExternalSet(g,[1..4]);
<xset:[ 1, 2, 3, 4 ]>
gap> e:=ExternalSet(g,g,OnRight);
<xset:<enumerator of perm group>>
gap> Orbits(e);
[ [ (), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,4,3), (1,4,2), (1,2,3),
(1,3,4), (2,3,4), (1,3,2), (1,4,3), (1,2,4) ] ]
\endexample
The following three attributes of an external set hold its constituents.
\Declaration{ActingDomain}
\Declaration{FunctionAction}
\Declaration{HomeEnumerator}
\beginexample
gap> ActingDomain(e);
Group([ (1,2,3), (2,3,4) ])
gap> FunctionAction(e)=OnRight;
true
gap> HomeEnumerator(e);
<enumerator of perm group>
\endexample
Most operations for actions are applicable as an attribute for an external
set.
\Declaration{IsExternalSubset}
The most prominent external subsets are orbits:
\Declaration{ExternalSubset}
\Declaration{IsExternalOrbit}
\Declaration{ExternalOrbit}
\beginexample
gap> e:=ExternalOrbit(g,g,(1,2,3));
(1,2,3)^G
\endexample
Many subsets of a group, such as conjugacy classes or cosets
(see~"ConjugacyClass" and "RightCoset") are implemented as external orbits.
\Declaration{StabilizerOfExternalSet}
\beginexample
gap> Representative(e);
(1,2,3)
gap> StabilizerOfExternalSet(e);
Group([ (1,2,3) ])
\endexample
\Declaration{ExternalOrbits}
\beginexample
gap> ExternalOrbits(g,AsList(g));
[ ()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G ]
\endexample
\Declaration{ExternalOrbitsStabilizers}
\beginexample
gap> e:=ExternalOrbitsStabilizers(g,AsList(g));
[ ()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G ]
gap> HasStabilizerOfExternalSet(e[3]);
true
gap> StabilizerOfExternalSet(e[3]);
Group([ (2,4,3) ])
\endexample
\Declaration{CanonicalRepresentativeOfExternalSet}
\Declaration{CanonicalRepresentativeDeterminatorOfExternalSet}
\Declaration{ActorOfExternalSet}
\beginexample
gap> u:=Subgroup(g,[(1,2,3)]);;
gap> e:=RightCoset(u,(1,2)(3,4));;
gap> CanonicalRepresentativeOfExternalSet(e);
(2,4,3)
gap> ActorOfExternalSet(e);
(1,3,2)
gap> FunctionAction(e)((1,2)(3,4),last);
(2,4,3)
\endexample
External sets also are implicitly underlying action homomorphisms:
\Declaration{UnderlyingExternalSet}
\beginexample
gap> g:=Group((1,2,3),(1,2));;
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);;
gap> s:=UnderlyingExternalSet(hom);
<xset:[[ 1, 2, 3 ],[ 1, 2, 4 ],[ 1, 3, 2 ],[ 1, 3, 4 ],[ 1, 4, 2 ],
[ 1, 4, 3 ],[ 2, 1, 3 ],[ 2, 1, 4 ],[ 2, 3, 1 ],[ 2, 3, 4 ],[ 2, 4, 1 ],
[ 2, 4, 3 ],[ 3, 1, 2 ],[ 3, 1, 4 ],[ 3, 2, 1 ], ...]>
gap> Print(s,"\n");
[ [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 3, 2 ], [ 1, 3, 4 ], [ 1, 4, 2 ],
[ 1, 4, 3 ], [ 2, 1, 3 ], [ 2, 1, 4 ], [ 2, 3, 1 ], [ 2, 3, 4 ],
[ 2, 4, 1 ], [ 2, 4, 3 ], [ 3, 1, 2 ], [ 3, 1, 4 ], [ 3, 2, 1 ],
[ 3, 2, 4 ], [ 3, 4, 1 ], [ 3, 4, 2 ], [ 4, 1, 2 ], [ 4, 1, 3 ],
[ 4, 2, 1 ], [ 4, 2, 3 ], [ 4, 3, 1 ], [ 4, 3, 2 ] ]
\endexample
\Declaration{SurjectiveActionHomomorphismAttr}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E
|