1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A orders.msk GAP documentation Isabel Araujo
%%
%A @(#)$Id: orders.msk,v 1.6 2002/04/15 10:02:31 sal Exp $
%%
%Y (C) 2000 School Math and Comp. Sci., University of St. Andrews, Scotland
%Y Copyright (C) 2002 The GAP Group
%%
\Chapter{Orderings}
\FileHeader{orders}[1]
\Declaration{IsOrdering}
\Declaration{OrderingsFamily}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Building new orderings}
\Declaration{OrderingByLessThanFunctionNC}
\Declaration{OrderingByLessThanOrEqualFunctionNC}
\beginexample
gap> f := FreeSemigroup("a","b");;
gap> a := GeneratorsOfSemigroup(f)[1];;
gap> b := GeneratorsOfSemigroup(f)[2];;
gap> lt := function(x,y) return Length(x)<Length(y); end;
function( x, y ) ... end
gap> fam := FamilyObj(a);;
gap> ord := OrderingByLessThanFunctionNC(fam,lt);
Ordering
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Properties and basic functionality}
\Declaration{IsWellFoundedOrdering}
\Declaration{IsTotalOrdering}
\Declaration{IsIncomparableUnder}
\Declaration{FamilyForOrdering}
\Declaration{LessThanFunction}
\Declaration{LessThanOrEqualFunction}
\Declaration{IsLessThanUnder}
\Declaration{IsLessThanOrEqualUnder}
\beginexample
gap> IsLessThanUnder(ord,a,a*b);
true
gap> IsLessThanOrEqualUnder(ord,a*b,a*b);
true
gap> IsIncomparableUnder(ord,a,b);
true
gap> FamilyForOrdering(ord) = FamilyObj(a);
true
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Orderings on families of associative words}
\FileHeader{orders}[2]
\Declaration{IsOrderingOnFamilyOfAssocWords}
\FileHeader{orders}[3]
\Declaration{IsTranslationInvariantOrdering}
\Declaration{IsReductionOrdering}
\Declaration{OrderingOnGenerators}
\Declaration{LexicographicOrdering}
\beginexample
gap> f := FreeSemigroup(3);
<free semigroup on the generators [ s1, s2, s3 ]>
gap> lex := LexicographicOrdering(f,[2,3,1]);
Ordering
gap> IsLessThanUnder(lex,f.2*f.3,f.3);
true
gap> IsLessThanUnder(lex,f.3,f.2);
false
\endexample
\Declaration{ShortLexOrdering}
\Declaration{IsShortLexOrdering}
\beginexample
gap> f := FreeSemigroup(3);
<free semigroup on the generators [ s1, s2, s3 ]>
gap> sl := ShortLexOrdering(f,[2,3,1]);
Ordering
gap> IsLessThanUnder(sl,f.1,f.2);
false
gap> IsLessThanUnder(sl,f.3,f.2);
false
gap> IsLessThanUnder(sl,f.3,f.1);
true
\endexample
\Declaration{WeightLexOrdering}
\Declaration{IsWeightLexOrdering}
\Declaration{WeightOfGenerators}
\beginexample
gap> f := FreeSemigroup(3);
<free semigroup on the generators [ s1, s2, s3 ]>
gap> wtlex := WeightLexOrdering(f,[f.2,f.3,f.1],[3,2,1]);
Ordering
gap> IsLessThanUnder(wtlex,f.1,f.2);
true
gap> IsLessThanUnder(wtlex,f.3,f.2);
true
gap> IsLessThanUnder(wtlex,f.3,f.1);
false
gap> OrderingOnGenerators(wtlex);
[ s2, s3, s1 ]
gap> WeightOfGenerators(wtlex);
[ 3, 2, 1 ]
\endexample
\Declaration{BasicWreathProductOrdering}
\Declaration{IsBasicWreathProductOrdering}
\beginexample
gap> f := FreeSemigroup(3);
<free semigroup on the generators [ s1, s2, s3 ]>
gap> basic := BasicWreathProductOrdering(f,[2,3,1]);
Ordering
gap> IsLessThanUnder(basic,f.3,f.1);
true
gap> IsLessThanUnder(basic,f.3*f.2,f.1);
true
gap> IsLessThanUnder(basic,f.3*f.2*f.1,f.1*f.3);
false
\endexample
\Declaration{WreathProductOrdering}
\Declaration{IsWreathProductOrdering}
\Declaration{LevelsOfGenerators}
\beginexample
gap> f := FreeSemigroup(3);
<free semigroup on the generators [ s1, s2, s3 ]>
gap> wrp := WreathProductOrdering(f,[1,2,3],[1,1,2,]);
Ordering
gap> IsLessThanUnder(wrp,f.3,f.1);
false
gap> IsLessThanUnder(wrp,f.3,f.2);
false
gap> IsLessThanUnder(wrp,f.1,f.2);
true
gap> LevelsOfGenerators(wrp);
[ 1, 1, 2 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E
|