1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%W tom.msk GAP documentation Goetz Pfeiffer
%W Thomas Merkwitz
%%
%H @(#)$Id: tom.msk,v 1.23.2.3 2006/09/16 19:02:49 jjm Exp $
%%
%Y (C) 1999 School Math and Comp. Sci., University of St. Andrews, Scotland
%Y Copyright (C) 2002 The GAP Group
%%
%% This file describes the functions dealing with tables of marks.
%% The corresponding {\GAP} code is contained in the files `lib/tom.g[di]'
%% and `pkg/tomlib/gap/tmadmin.tm[di]'.
%%
\Chapter{Tables of Marks}
\FileHeader[1]{tom}
%% The code for tables of marks has been designed and implemented by G{\"o}tz
%% Pfeiffer and Thomas Merkwitz.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{More about Tables of Marks}
\FileHeader[2]{tom}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Table of Marks Objects in GAP}
\FileHeader[3]{tom}
Several examples in this chapter require
the {\GAP} Library of Tables of Marks to be available.
If it is not yet loaded then we load it now.
\beginexample
gap> LoadPackage( "tomlib" );
true
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Constructing Tables of Marks}
\Declaration{TableOfMarks}
\beginexample
gap> tom:= TableOfMarks( AlternatingGroup( 5 ) );
TableOfMarks( Alt( [ 1 .. 5 ] ) )
gap> TableOfMarks( "J5" );
fail
gap> a5:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> mat:=
> [ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ],
> [ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ],
> [ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ],
> [ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ],
> [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ];;
gap> TableOfMarks( mat );
TableOfMarks( <9 classes> )
\endexample
\FileHeader[4]{tom}
\Declaration{TableOfMarksByLattice}
\Declaration{LatticeSubgroupsByTom}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Printing Tables of Marks}
\FileHeader[5]{tom}
\beginexample
gap> tom:= TableOfMarks( "A5" );;
gap> Display( tom );
1: 60
2: 30 2
3: 20 . 2
4: 15 3 . 3
5: 12 . . . 2
6: 10 2 1 . . 1
7: 6 2 . . 1 . 1
8: 5 1 2 1 . . . 1
9: 1 1 1 1 1 1 1 1 1
gap> Display( tom, rec( classes:= [ 1, 2, 3, 4, 8 ] ) );
1: 60
2: 30 2
3: 20 . 2
4: 15 3 . 3
8: 5 1 2 1 1
gap> Display( tom, rec( form:= "subgroups" ) );
1: 1
2: 1 1
3: 1 . 1
4: 1 3 . 1
5: 1 . . . 1
6: 1 3 1 . . 1
7: 1 5 . . 1 . 1
8: 1 3 4 1 . . . 1
9: 1 15 10 5 6 10 6 5 1
gap> Display( tom, rec( form:= "supergroups" ) );
1: 1
2: 15 1
3: 10 . 1
4: 5 1 . 1
5: 6 . . . 1
6: 10 2 1 . . 1
7: 6 2 . . 1 . 1
8: 5 1 2 1 . . . 1
9: 1 1 1 1 1 1 1 1 1
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Sorting Tables of Marks}
\Declaration{SortedTom}
\beginexample
gap> tom:= TableOfMarksCyclic( 6 );; Display( tom );
1: 6
2: 3 3
3: 2 . 2
4: 1 1 1 1
gap> sorted:= SortedTom( tom, (2,3) );; Display( sorted );
1: 6
2: 2 2
3: 3 . 3
4: 1 1 1 1
gap> wrong:= SortedTom( tom, (1,2) );; Display( wrong );
1: 3
2: . 6
3: . 2 2
4: 1 1 1 1
\endexample
\Declaration{PermutationTom}
\beginexample
gap> MarksTom( tom )[2];
[ 3, 3 ]
gap> MarksTom( sorted )[2];
[ 2, 2 ]
gap> HasPermutationTom( sorted );
true
gap> PermutationTom( sorted );
(2,3)
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Technical Details about Tables of Marks}
\Declaration{InfoTom}
\Declaration{IsTableOfMarks}
\Declaration{TableOfMarksFamily}
\Declaration{TableOfMarksComponents}
\Declaration{ConvertToTableOfMarks}
\beginexample
gap> record:= rec( MarksTom:= [ [ 4 ], [ 2, 2 ], [ 1, 1, 1 ] ],
> SubsTom:= [ [ 1 ], [ 1, 2 ], [ 1, 2, 3 ] ] );;
gap> ConvertToTableOfMarks( record );;
gap> record;
TableOfMarks( <3 classes> )
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Attributes of Tables of Marks}
\Declaration{MarksTom}
\beginexample
gap> a5:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> MarksTom( a5 );
[ [ 60 ], [ 30, 2 ], [ 20, 2 ], [ 15, 3, 3 ], [ 12, 2 ], [ 10, 2, 1, 1 ],
[ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
gap> SubsTom( a5 );
[ [ 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 2, 4 ], [ 1, 5 ], [ 1, 2, 3, 6 ],
[ 1, 2, 5, 7 ], [ 1, 2, 3, 4, 8 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]
\endexample
\Declaration{NrSubsTom}
\beginexample
gap> NrSubsTom( a5 );
[ [ 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 3, 1 ], [ 1, 1 ], [ 1, 3, 1, 1 ],
[ 1, 5, 1, 1 ], [ 1, 3, 4, 1, 1 ], [ 1, 15, 10, 5, 6, 10, 6, 5, 1 ] ]
gap> OrdersTom( a5 );
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
\endexample
\Declaration{LengthsTom}
\beginexample
gap> LengthsTom( a5 );
[ 1, 15, 10, 5, 6, 10, 6, 5, 1 ]
\endexample
\Declaration{ClassTypesTom}
\beginexample
gap> a6:= TableOfMarks( "A6" );;
gap> ClassTypesTom( a6 );
[ 1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16 ]
\endexample
\Declaration{ClassNamesTom}
\beginexample
gap> ClassNamesTom( a6 );
[ "1", "2", "3a", "3b", "5", "4", "(4)_2a", "(4)_2b", "(6)a", "(6)b", "(8)",
"(9)", "(10)", "(12)a", "(12)b", "(18)", "(24)a", "(24)b", "(36)", "(60)a",
"(60)b", "(360)" ]
\endexample
\Declaration{FusionsTom}
\beginexample
gap> fus:= FusionsTom( a6 );;
gap> fus[1];
[ "L3(4)", [ 1, 2, 3, 3, 14, 5, 9, 7, 15, 15, 24, 26, 27, 32, 33, 50, 57, 55,
63, 73, 77, 90 ] ]
\endexample
\Declaration{UnderlyingGroup}!{for tables of marks}
\beginexample
gap> UnderlyingGroup( a6 );
Group([ (1,2)(3,4), (1,2,4,5)(3,6) ])
\endexample
\Declaration{IdempotentsTom}
\beginexample
gap> IdempotentsTom( a5 );
[ 1, 1, 1, 1, 1, 1, 1, 1, 9 ]
gap> IdempotentsTomInfo( a5 );
rec(
primidems := [ [ 1, -2, -1, 0, 0, 1, 1, 1 ], [ -1, 2, 1, 0, 0, -1, -1, -1,
1 ] ],
fixpointvectors := [ [ 1, 1, 1, 1, 1, 1, 1, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 0,
0, 1 ] ] )
\endexample
\Declaration{Identifier}!{for tables of marks}
\beginexample
gap> Identifier( a5 );
"A5"
\endexample
\Declaration{MatTom}
\beginexample
gap> MatTom( a5 );
[ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ],
[ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ],
[ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ],
[ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ],
[ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
\endexample
\Declaration{MoebiusTom}
\beginexample
gap> MoebiusTom( a5 );
rec( mu := [ -60, 4, 2,,, -1, -1, -1, 1 ], nu := [ -1, 2, 1,,, -1, -1, -1, 1 ]
, ex := [ -60, 4, 2,,, -1, -1, -1, 1 ], hyp := [ ] )
gap> tom:= TableOfMarks( "M12" );;
gap> moebius:= MoebiusTom( tom );;
gap> moebius.hyp;
[ 1, 2, 4, 16, 39, 45, 105 ]
gap> moebius.mu[1]; moebius.ex[1];
95040
190080
\endexample
\Declaration{WeightsTom}
\beginexample
gap> wt:= WeightsTom( a5 );
[ 60, 2, 2, 3, 2, 1, 1, 1, 1 ]
\endexample
This information may be used to obtain the numbers of conjugate
supergroups from the marks.
\beginexample
gap> marks:= MarksTom( a5 );;
gap> List( [ 1 .. 9 ], x -> marks[x] / wt[x] );
[ [ 1 ], [ 15, 1 ], [ 10, 1 ], [ 5, 1, 1 ], [ 6, 1 ], [ 10, 2, 1, 1 ],
[ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Properties of Tables of Marks}
\FileHeader[6]{tom}
\beginexample
gap> tom:= TableOfMarks( "A5" );;
gap> IsAbelianTom( tom ); IsPerfectTom( tom );
false
true
gap> IsAbelianTom( tom, 3 ); IsNilpotentTom( tom, 7 );
true
false
gap> IsPerfectTom( tom, 7 ); IsSolvableTom( tom, 7 );
false
true
gap> for i in [ 1 .. 6 ] do
> Print( i, ": ", IsCyclicTom(a5, i), " " );
> od; Print( "\n" );
1: true 2: true 3: true 4: false 5: true 6: false
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Other Operations for Tables of Marks}
\FileHeader[7]{tom}
\Declaration{DerivedSubgroupTom}
\Declaration{DerivedSubgroupsTomPossible}
\beginexample
gap> a5:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> DerivedSubgroupTom( a5, 2 );
1
gap> DerivedSubgroupsTom( a5 );
[ 1, 1, 1, 1, 1, 3, 5, 4, 9 ]
\endexample
\Declaration{NormalizerTom}
\beginexample
gap> NormalizerTom( a5, 4 );
8
gap> NormalizersTom( a5 );
[ 9, 4, 6, 8, 7, 6, 7, 8, 9 ]
\endexample
The example shows that a subgroup with class number 4 in $A_5$
(which is a Kleinian four group)
is normalized by a subgroup in class 8.
This class contains the subgroups of $A_5$ which are isomorphic to $A_4$.
\Declaration{ContainedTom}
\Declaration{ContainingTom}
\beginexample
gap> ContainedTom( a5, 3, 5 ); ContainedTom( a5, 3, 8 );
0
4
gap> ContainingTom( a5, 3, 5 ); ContainingTom( a5, 3, 8 );
0
2
\endexample
\Declaration{CyclicExtensionsTom}
\beginexample
gap> CyclicExtensionsTom( a5, 2 );
[ [ 1, 2, 4 ], [ 3, 6 ], [ 5, 7 ], [ 8 ], [ 9 ] ]
\endexample
\Declaration{DecomposedFixedPointVector}
\beginexample
gap> DecomposedFixedPointVector( a5, [ 16, 4, 1, 0, 1, 1, 1 ] );
[ 0, 0, 0, 0, 0, 1, 1 ]
\endexample
The vector <fix> may be any vector of integers.
The resulting decomposition, however, will not be integral, in general.
\beginexample
gap> DecomposedFixedPointVector( a5, [ 0, 0, 0, 0, 1, 1 ] );
[ 2/5, -1, -1/2, 0, 1/2, 1 ]
\endexample
\Declaration{EulerianFunctionByTom}
\beginexample
gap> EulerianFunctionByTom( a5, 2 );
2280
gap> EulerianFunctionByTom( a5, 3 );
200160
gap> EulerianFunctionByTom( a5, 2, 3 );
8
\endexample
\Declaration{IntersectionsTom}
\beginexample
gap> IntersectionsTom( a5, 8, 8 );
[ 0, 0, 1, 0, 0, 0, 0, 1 ]
\endexample
Any two subgroups of class number 8 ($A_4$) of $A_5$ are either equal and
their intersection has again class number 8, or their intersection has
class number $3$, and is a cyclic subgroup of order 3.
\Declaration{FactorGroupTom}
\beginexample
gap> s4:= TableOfMarks( SymmetricGroup( 4 ) );
TableOfMarks( Sym( [ 1 .. 4 ] ) )
gap> LengthsTom( s4 );
[ 1, 3, 6, 4, 1, 3, 3, 4, 3, 1, 1 ]
gap> OrdersTom( s4 );
[ 1, 2, 2, 3, 4, 4, 4, 6, 8, 12, 24 ]
gap> s3:= FactorGroupTom( s4, 5 );
TableOfMarks( Group([ f1, f2 ]) )
gap> Display( s3 );
1: 6
2: 3 1
3: 2 . 2
4: 1 1 1 1
\endexample
\Declaration{MaximalSubgroupsTom}
\Declaration{MinimalSupergroupsTom}
\beginexample
gap> MaximalSubgroupsTom( s4 );
[ [ 10, 9, 8 ], [ 1, 3, 4 ] ]
gap> MaximalSubgroupsTom( s4, 10 );
[ [ 5, 4 ], [ 1, 4 ] ]
gap> MinimalSupergroupsTom( s4, 5 );
[ [ 9, 10 ], [ 3, 1 ] ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Standard Generators of Groups}
\FileHeader[1]{../pkg/tomlib/gap/stdgen}
\Declaration{StandardGeneratorsInfo}[../pkg/tomlib/gap/stdgen]!{for groups}
\beginexample
gap> StandardGeneratorsInfo( TableOfMarks( "L3(3)" ) );
[ rec( generators := "a, b",
description := "||a||=2, ||b||=3, ||C(b)||=9, ||ab||=13, ||ababb||=4",
script := [ [ 1, 2 ], [ 2, 3 ], [ [ 2, 1 ], [ "||C(",, ")||" ], 9 ],
[ 1, 1, 2, 1, 13 ], [ 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4 ] ],
ATLAS := true ) ]
\endexample
%T replace by an example for isom. type as soon as this is implemented!
\Declaration{HumanReadableDefinition}
\beginexample
gap> scr:= ScriptFromString( "||a||=2, ||b||=3, ||C(b)||=9, ||ab||=13, ||ababb||=4" );
[ [ 1, 2 ], [ 2, 3 ], [ [ 2, 1 ], [ "||C(",, ")||" ], 9 ], [ 1, 1, 2, 1, 13 ],
[ 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4 ] ]
gap> info:= rec( script:= scr );
rec( script := [ [ 1, 2 ], [ 2, 3 ], [ [ 2, 1 ], [ "||C(",, ")||" ], 9 ],
[ 1, 1, 2, 1, 13 ], [ 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4 ] ] )
gap> HumanReadableDefinition( info );
"||a||=2, ||b||=3, ||C(b)||=9, ||ab||=13, ||ababb||=4"
gap> info;
rec( script := [ [ 1, 2 ], [ 2, 3 ], [ [ 2, 1 ], [ "||C(",, ")||" ], 9 ],
[ 1, 1, 2, 1, 13 ], [ 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4 ] ],
generators := "a, b",
description := "||a||=2, ||b||=3, ||C(b)||=9, ||ab||=13, ||ababb||=4" )
\endexample
\Declaration{StandardGeneratorsFunctions}
\beginexample
gap> StandardGeneratorsFunctions{ [ 1, 2 ] };
[ function( G, g ) ... end, [ "||C(",, ")||" ] ]
\endexample
\Declaration{IsStandardGeneratorsOfGroup}
\Declaration{StandardGeneratorsOfGroup}
\beginexample
gap> a5:= AlternatingGroup( 5 );
Alt( [ 1 .. 5 ] )
gap> info:= StandardGeneratorsInfo( TableOfMarks( "A5" ) )[1];
rec( generators := "a, b", description := "||a||=2, ||b||=3, ||ab||=5",
script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], ATLAS := true )
gap> IsStandardGeneratorsOfGroup( info, a5, [ (1,3)(2,4), (3,4,5) ] );
true
gap> IsStandardGeneratorsOfGroup( info, a5, [ (1,3)(2,4), (1,2,3) ] );
false
gap> s5:= SymmetricGroup( 5 );;
gap> RepresentativeAction( s5, [ (1,3)(2,4), (3,4,5) ],
> StandardGeneratorsOfGroup( info, a5 ), OnPairs ) <> fail;
true
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Accessing Subgroups via Tables of Marks}
\FileHeader[8]{tom}
\Declaration{GeneratorsSubgroupsTom}
\Declaration{StraightLineProgramsTom}
\Declaration{IsTableOfMarksWithGens}
\beginexample
gap> a5:= TableOfMarks( "A5" );; IsTableOfMarksWithGens( a5 );
true
gap> HasGeneratorsSubgroupsTom( a5 ); HasStraightLineProgramsTom( a5 );
false
true
gap> alt5:= TableOfMarks( AlternatingGroup( 5 ) );;
gap> IsTableOfMarksWithGens( alt5 );
true
gap> HasGeneratorsSubgroupsTom( alt5 ); HasStraightLineProgramsTom( alt5 );
true
false
gap> progs:= StraightLineProgramsTom( a5 );;
gap> OrdersTom( a5 );
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
gap> IsCyclicTom( a5, 4 );
false
gap> Length( progs[4] );
2
gap> progs[4][1];
<straight line program>
gap> Display( progs[4][1] ); # first generator of an el. ab group of order 4
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[2]*r[1];
r[4]:= r[3]*r[2]^-1*r[1]*r[3]*r[2]^-1*r[1]*r[2];
# return value:
r[4]
gap> x:= [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ];;
gap> y:= [ [ Z(2^2), Z(2)^0 ], [ 0*Z(2), Z(2^2)^2 ] ];;
gap> res1:= ResultOfStraightLineProgram( progs[4][1], [ x, y ] );
[ [ Z(2)^0, 0*Z(2) ], [ Z(2^2)^2, Z(2)^0 ] ]
gap> res2:= ResultOfStraightLineProgram( progs[4][2], [ x, y ] );
[ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ]
gap> w:= y*x;;
gap> res1 = w*y^-1*x*w*y^-1*x*y;
true
gap> subgrp:= Group( res1, res2 );; Size( subgrp ); IsCyclic( subgrp );
4
false
\endexample
\Declaration{RepresentativeTom}
\beginexample
gap> RepresentativeTom( a5, 4 );
Group([ (2,3)(4,5), (2,4)(3,5) ])
\endexample
\Declaration{StandardGeneratorsInfo}[tom]!{for tables of marks}
\beginexample
gap> std:= StandardGeneratorsInfo( a5 );
[ rec( generators := "a, b", description := "||a||=2, ||b||=3, ||ab||=5",
script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], ATLAS := true ) ]
gap> # Now find standard generators of an isomorphic group.
gap> g:= SL(2,4);;
gap> repeat
> x:= PseudoRandom( g );
> until Order( x ) = 2;
gap> repeat
> y:= PseudoRandom( g );
> until Order( y ) = 3 and Order( x*y ) = 5;
gap> # Compute a representative w.r.t. these generators.
gap> RepresentativeTomByGenerators( a5, 4, [ x, y ] );
Group([ [ [ Z(2)^0, Z(2^2) ], [ 0*Z(2), Z(2)^0 ] ],
[ [ Z(2)^0, Z(2^2)^2 ], [ 0*Z(2), Z(2)^0 ] ] ])
gap> # Show that the new generators are really good.
gap> grp:= UnderlyingGroup( a5 );;
gap> iso:= GroupGeneralMappingByImages( grp, g,
> GeneratorsOfGroup( grp ), [ x, y ] );;
gap> IsGroupHomomorphism( iso );
true
gap> IsBijective( iso );
true
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{The Interface between Tables of Marks and Character Tables}
The following examples require the {\GAP} Character Table Library
to be available.
If it is not yet loaded then we load it now.
\beginexample
gap> LoadPackage( "ctbllib" );
true
\endexample
\Declaration{FusionCharTableTom}
\beginexample
gap> a5c:= CharacterTable( "A5" );;
gap> fus:= FusionCharTableTom( a5c, a5 );
[ 1, 2, 3, 5, 5 ]
\endexample
\Declaration{PermCharsTom}
\beginexample
gap> PermCharsTom( a5c, a5 );
[ Character( CharacterTable( "A5" ), [ 60, 0, 0, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 30, 2, 0, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 15, 3, 0, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ),
Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ),
Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ) ]
gap> PermCharsTom( fus, a5 )[1];
[ 60, 0, 0, 0, 0 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Generic Construction of Tables of Marks}
\FileHeader[9]{tom}
\Declaration{TableOfMarksCyclic}
\Declaration{TableOfMarksDihedral}
\Declaration{TableOfMarksFrobenius}
\beginexample
gap> Display( TableOfMarksCyclic( 6 ) );
1: 6
2: 3 3
3: 2 . 2
4: 1 1 1 1
gap> Display( TableOfMarksDihedral( 12 ) );
1: 12
2: 6 6
3: 6 . 2
4: 6 . . 2
5: 4 . . . 4
6: 3 3 1 1 . 1
7: 2 2 . . 2 . 2
8: 2 . 2 . 2 . . 2
9: 2 . . 2 2 . . . 2
10: 1 1 1 1 1 1 1 1 1 1
gap> Display( TableOfMarksFrobenius( 5, 4 ) );
1: 20
2: 10 2
3: 5 1 1
4: 4 . . 4
5: 2 2 . 2 2
6: 1 1 1 1 1 1
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{The Library of Tables of Marks}
The {\GAP} package `TomLib' provides access to several hundred tables of
marks of almost simple groups and their maximal subgroups.
If this package is installed then the tables from this database can be
accessed via `TableOfMarks' with argument a string (see~"TableOfMarks").
If also the {\GAP} Character Table Library is installed and contains the
ordinary character table of the group for which one wants to fetch the table
of marks then one can also call `TableOfMarks' with argument the character
table.
A list of all names of tables of marks in the database can be obtained via
`AllLibTomNames'.
\beginexample
gap> names:= AllLibTomNames();;
gap> "A5" in names;
true
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E
|