File: tom.msk

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (663 lines) | stat: -rw-r--r-- 18,322 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%W  tom.msk                     GAP documentation              Goetz Pfeiffer
%W                                                            Thomas Merkwitz
%%
%H  @(#)$Id: tom.msk,v 1.23.2.3 2006/09/16 19:02:49 jjm Exp $
%%
%Y  (C) 1999 School Math and Comp. Sci., University of St.  Andrews, Scotland
%Y  Copyright (C) 2002 The GAP Group
%%
%%  This file describes the functions dealing with tables of marks.
%%  The corresponding {\GAP} code is contained in the files `lib/tom.g[di]'
%%  and `pkg/tomlib/gap/tmadmin.tm[di]'.
%%
\Chapter{Tables of Marks}

\FileHeader[1]{tom}

%%  The code for tables of marks has been designed and implemented by G{\"o}tz
%%  Pfeiffer and Thomas Merkwitz.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{More about Tables of Marks}

\FileHeader[2]{tom}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Table of Marks Objects in GAP}

\FileHeader[3]{tom}
Several examples in this chapter require
the {\GAP} Library of Tables of Marks to be available.
If it is not yet loaded then we load it now.

\beginexample
gap> LoadPackage( "tomlib" );
true
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Constructing Tables of Marks}

\Declaration{TableOfMarks}
\beginexample
gap> tom:= TableOfMarks( AlternatingGroup( 5 ) );
TableOfMarks( Alt( [ 1 .. 5 ] ) )
gap> TableOfMarks( "J5" );
fail
gap> a5:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> mat:=
> [ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ], 
>   [ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ], 
>   [ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ], 
>   [ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ], 
>   [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ];;
gap> TableOfMarks( mat );
TableOfMarks( <9 classes> )
\endexample

\FileHeader[4]{tom}

\Declaration{TableOfMarksByLattice}
\Declaration{LatticeSubgroupsByTom}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Printing Tables of Marks}

\FileHeader[5]{tom}

\beginexample
gap> tom:= TableOfMarks( "A5" );;
gap> Display( tom );
1:  60
2:  30 2
3:  20 . 2
4:  15 3 . 3
5:  12 . . . 2
6:  10 2 1 . . 1
7:   6 2 . . 1 . 1
8:   5 1 2 1 . . . 1
9:   1 1 1 1 1 1 1 1 1

gap> Display( tom, rec( classes:= [ 1, 2, 3, 4, 8 ] ) );
1:  60
2:  30 2
3:  20 . 2
4:  15 3 . 3
8:   5 1 2 1 1

gap> Display( tom, rec( form:= "subgroups" ) );
1:  1
2:  1  1
3:  1  .  1
4:  1  3  . 1
5:  1  .  . . 1
6:  1  3  1 . .  1
7:  1  5  . . 1  . 1
8:  1  3  4 1 .  . . 1
9:  1 15 10 5 6 10 6 5 1

gap> Display( tom, rec( form:= "supergroups" ) );
1:   1
2:  15 1
3:  10 . 1
4:   5 1 . 1
5:   6 . . . 1
6:  10 2 1 . . 1
7:   6 2 . . 1 . 1
8:   5 1 2 1 . . . 1
9:   1 1 1 1 1 1 1 1 1

\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Sorting Tables of Marks}

\Declaration{SortedTom}
\beginexample
gap> tom:= TableOfMarksCyclic( 6 );;  Display( tom );
1:  6
2:  3 3
3:  2 . 2
4:  1 1 1 1

gap> sorted:= SortedTom( tom, (2,3) );;  Display( sorted );
1:  6
2:  2 2
3:  3 . 3
4:  1 1 1 1

gap> wrong:= SortedTom( tom, (1,2) );;  Display( wrong );
1:  3
2:  . 6
3:  . 2 2
4:  1 1 1 1

\endexample

\Declaration{PermutationTom}
\beginexample
gap> MarksTom( tom )[2];
[ 3, 3 ]
gap> MarksTom( sorted )[2];
[ 2, 2 ]
gap> HasPermutationTom( sorted );
true
gap> PermutationTom( sorted );
(2,3)
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Technical Details about Tables of Marks}

\Declaration{InfoTom}
\Declaration{IsTableOfMarks}
\Declaration{TableOfMarksFamily}
\Declaration{TableOfMarksComponents}
\Declaration{ConvertToTableOfMarks}
\beginexample
gap> record:= rec( MarksTom:= [ [ 4 ], [ 2, 2 ], [ 1, 1, 1 ] ],
>  SubsTom:= [ [ 1 ], [ 1, 2 ], [ 1, 2, 3 ] ] );;
gap> ConvertToTableOfMarks( record );;
gap> record;
TableOfMarks( <3 classes> )
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Attributes of Tables of Marks}

\Declaration{MarksTom}
\beginexample
gap> a5:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> MarksTom( a5 );
[ [ 60 ], [ 30, 2 ], [ 20, 2 ], [ 15, 3, 3 ], [ 12, 2 ], [ 10, 2, 1, 1 ], 
  [ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
gap> SubsTom( a5 );
[ [ 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 2, 4 ], [ 1, 5 ], [ 1, 2, 3, 6 ], 
  [ 1, 2, 5, 7 ], [ 1, 2, 3, 4, 8 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]
\endexample

\Declaration{NrSubsTom}
\beginexample
gap> NrSubsTom( a5 );
[ [ 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 3, 1 ], [ 1, 1 ], [ 1, 3, 1, 1 ], 
  [ 1, 5, 1, 1 ], [ 1, 3, 4, 1, 1 ], [ 1, 15, 10, 5, 6, 10, 6, 5, 1 ] ]
gap> OrdersTom( a5 );
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
\endexample

\Declaration{LengthsTom}
\beginexample
gap> LengthsTom( a5 );
[ 1, 15, 10, 5, 6, 10, 6, 5, 1 ]
\endexample

\Declaration{ClassTypesTom}
\beginexample
gap> a6:= TableOfMarks( "A6" );;
gap> ClassTypesTom( a6 );
[ 1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16 ]
\endexample

\Declaration{ClassNamesTom}
\beginexample
gap> ClassNamesTom( a6 );
[ "1", "2", "3a", "3b", "5", "4", "(4)_2a", "(4)_2b", "(6)a", "(6)b", "(8)", 
  "(9)", "(10)", "(12)a", "(12)b", "(18)", "(24)a", "(24)b", "(36)", "(60)a", 
  "(60)b", "(360)" ]
\endexample

\Declaration{FusionsTom}
\beginexample
gap> fus:= FusionsTom( a6 );;
gap> fus[1];
[ "L3(4)", [ 1, 2, 3, 3, 14, 5, 9, 7, 15, 15, 24, 26, 27, 32, 33, 50, 57, 55, 
      63, 73, 77, 90 ] ]
\endexample

\Declaration{UnderlyingGroup}!{for tables of marks}
\beginexample
gap> UnderlyingGroup( a6 );
Group([ (1,2)(3,4), (1,2,4,5)(3,6) ])
\endexample

\Declaration{IdempotentsTom}
\beginexample
gap> IdempotentsTom( a5 );
[ 1, 1, 1, 1, 1, 1, 1, 1, 9 ]
gap> IdempotentsTomInfo( a5 );
rec( 
  primidems := [ [ 1, -2, -1, 0, 0, 1, 1, 1 ], [ -1, 2, 1, 0, 0, -1, -1, -1, 
          1 ] ], 
  fixpointvectors := [ [ 1, 1, 1, 1, 1, 1, 1, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 
          0, 1 ] ] )
\endexample

\Declaration{Identifier}!{for tables of marks}
\beginexample
gap> Identifier( a5 );
"A5"
\endexample

\Declaration{MatTom}
\beginexample
gap> MatTom( a5 );
[ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ], 
  [ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ], 
  [ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ], 
  [ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ], 
  [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
\endexample

\Declaration{MoebiusTom}
\beginexample
gap> MoebiusTom( a5 );
rec( mu := [ -60, 4, 2,,, -1, -1, -1, 1 ], nu := [ -1, 2, 1,,, -1, -1, -1, 1 ]
    , ex := [ -60, 4, 2,,, -1, -1, -1, 1 ], hyp := [  ] )
gap> tom:= TableOfMarks( "M12" );;
gap> moebius:= MoebiusTom( tom );;
gap> moebius.hyp;
[ 1, 2, 4, 16, 39, 45, 105 ]
gap> moebius.mu[1];  moebius.ex[1];
95040
190080
\endexample

\Declaration{WeightsTom}
\beginexample
gap> wt:= WeightsTom( a5 );
[ 60, 2, 2, 3, 2, 1, 1, 1, 1 ]
\endexample
This information may be used to obtain the numbers of conjugate
supergroups from the marks.
\beginexample
gap> marks:= MarksTom( a5 );;
gap> List( [ 1 .. 9 ], x -> marks[x] / wt[x] );
[ [ 1 ], [ 15, 1 ], [ 10, 1 ], [ 5, 1, 1 ], [ 6, 1 ], [ 10, 2, 1, 1 ], 
  [ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Properties of Tables of Marks}

\FileHeader[6]{tom}

\beginexample
gap> tom:= TableOfMarks( "A5" );;
gap> IsAbelianTom( tom );  IsPerfectTom( tom );
false
true
gap> IsAbelianTom( tom, 3 );  IsNilpotentTom( tom, 7 );
true
false
gap> IsPerfectTom( tom, 7 );  IsSolvableTom( tom, 7 );
false
true
gap> for i in [ 1 .. 6 ] do
> Print( i, ": ", IsCyclicTom(a5, i), "  " );
> od;  Print( "\n" );
1: true  2: true  3: true  4: false  5: true  6: false  
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Other Operations for Tables of Marks}

\FileHeader[7]{tom}

\Declaration{DerivedSubgroupTom}
\Declaration{DerivedSubgroupsTomPossible}
\beginexample
gap> a5:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> DerivedSubgroupTom( a5, 2 );
1
gap> DerivedSubgroupsTom( a5 );
[ 1, 1, 1, 1, 1, 3, 5, 4, 9 ]
\endexample

\Declaration{NormalizerTom}
\beginexample
gap> NormalizerTom( a5, 4 );
8
gap> NormalizersTom( a5 );
[ 9, 4, 6, 8, 7, 6, 7, 8, 9 ]
\endexample
The example shows that a subgroup with class number 4 in $A_5$
(which is a Kleinian four group)
is normalized by a subgroup in class 8.
This class contains the subgroups of $A_5$ which are isomorphic to $A_4$.

\Declaration{ContainedTom}
\Declaration{ContainingTom}
\beginexample
gap> ContainedTom( a5, 3, 5 );  ContainedTom( a5, 3, 8 );
0
4
gap> ContainingTom( a5, 3, 5 );  ContainingTom( a5, 3, 8 );
0
2
\endexample

\Declaration{CyclicExtensionsTom}
\beginexample
gap> CyclicExtensionsTom( a5, 2 );
[ [ 1, 2, 4 ], [ 3, 6 ], [ 5, 7 ], [ 8 ], [ 9 ] ]
\endexample

\Declaration{DecomposedFixedPointVector}
\beginexample
gap> DecomposedFixedPointVector( a5, [ 16, 4, 1, 0, 1, 1, 1 ] );
[ 0, 0, 0, 0, 0, 1, 1 ]
\endexample
The vector <fix> may be any vector of integers.
The resulting decomposition, however, will not be integral, in general.
\beginexample
gap> DecomposedFixedPointVector( a5, [ 0, 0, 0, 0, 1, 1 ] );
[ 2/5, -1, -1/2, 0, 1/2, 1 ]
\endexample

\Declaration{EulerianFunctionByTom}
\beginexample
gap> EulerianFunctionByTom( a5, 2 );
2280
gap> EulerianFunctionByTom( a5, 3 );
200160
gap> EulerianFunctionByTom( a5, 2, 3 );
8
\endexample

\Declaration{IntersectionsTom}
\beginexample
gap> IntersectionsTom( a5, 8, 8 );
[ 0, 0, 1, 0, 0, 0, 0, 1 ]
\endexample
Any two subgroups of class number 8 ($A_4$) of $A_5$ are either equal and
their intersection has again class number 8, or their intersection has
class number $3$, and is a cyclic subgroup of order 3.

\Declaration{FactorGroupTom}
\beginexample
gap> s4:= TableOfMarks( SymmetricGroup( 4 ) );
TableOfMarks( Sym( [ 1 .. 4 ] ) )
gap> LengthsTom( s4 );
[ 1, 3, 6, 4, 1, 3, 3, 4, 3, 1, 1 ]
gap> OrdersTom( s4 );
[ 1, 2, 2, 3, 4, 4, 4, 6, 8, 12, 24 ]
gap> s3:= FactorGroupTom( s4, 5 );
TableOfMarks( Group([ f1, f2 ]) )
gap> Display( s3 );
1:  6
2:  3 1
3:  2 . 2
4:  1 1 1 1

\endexample

\Declaration{MaximalSubgroupsTom}
\Declaration{MinimalSupergroupsTom}
\beginexample
gap> MaximalSubgroupsTom( s4 );
[ [ 10, 9, 8 ], [ 1, 3, 4 ] ]
gap> MaximalSubgroupsTom( s4, 10 );
[ [ 5, 4 ], [ 1, 4 ] ]
gap> MinimalSupergroupsTom( s4, 5 );
[ [ 9, 10 ], [ 3, 1 ] ]
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Standard Generators of Groups}

\FileHeader[1]{../pkg/tomlib/gap/stdgen}

\Declaration{StandardGeneratorsInfo}[../pkg/tomlib/gap/stdgen]!{for groups}
\beginexample
gap> StandardGeneratorsInfo( TableOfMarks( "L3(3)" ) );
[ rec( generators := "a, b", 
      description := "||a||=2, ||b||=3, ||C(b)||=9, ||ab||=13, ||ababb||=4", 
      script := [ [ 1, 2 ], [ 2, 3 ], [ [ 2, 1 ], [ "||C(",, ")||" ], 9 ], 
          [ 1, 1, 2, 1, 13 ], [ 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4 ] ], 
      ATLAS := true ) ]
\endexample
%T  replace by an example for isom. type as soon as this is implemented!

\Declaration{HumanReadableDefinition}
\beginexample
gap> scr:= ScriptFromString( "||a||=2, ||b||=3, ||C(b)||=9, ||ab||=13, ||ababb||=4" );
[ [ 1, 2 ], [ 2, 3 ], [ [ 2, 1 ], [ "||C(",, ")||" ], 9 ], [ 1, 1, 2, 1, 13 ], 
  [ 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4 ] ]
gap> info:= rec( script:= scr );
rec( script := [ [ 1, 2 ], [ 2, 3 ], [ [ 2, 1 ], [ "||C(",, ")||" ], 9 ], 
      [ 1, 1, 2, 1, 13 ], [ 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4 ] ] )
gap> HumanReadableDefinition( info );
"||a||=2, ||b||=3, ||C(b)||=9, ||ab||=13, ||ababb||=4"
gap> info;
rec( script := [ [ 1, 2 ], [ 2, 3 ], [ [ 2, 1 ], [ "||C(",, ")||" ], 9 ], 
      [ 1, 1, 2, 1, 13 ], [ 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4 ] ], 
  generators := "a, b", 
  description := "||a||=2, ||b||=3, ||C(b)||=9, ||ab||=13, ||ababb||=4" )
\endexample

\Declaration{StandardGeneratorsFunctions}
\beginexample
gap> StandardGeneratorsFunctions{ [ 1, 2 ] };
[ function( G, g ) ... end, [ "||C(",, ")||" ] ]
\endexample

\Declaration{IsStandardGeneratorsOfGroup}
\Declaration{StandardGeneratorsOfGroup}
\beginexample
gap> a5:= AlternatingGroup( 5 );
Alt( [ 1 .. 5 ] )
gap> info:= StandardGeneratorsInfo( TableOfMarks( "A5" ) )[1];
rec( generators := "a, b", description := "||a||=2, ||b||=3, ||ab||=5", 
  script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], ATLAS := true )
gap> IsStandardGeneratorsOfGroup( info, a5, [ (1,3)(2,4), (3,4,5) ] );
true
gap> IsStandardGeneratorsOfGroup( info, a5, [ (1,3)(2,4), (1,2,3) ] );
false
gap> s5:= SymmetricGroup( 5 );;
gap> RepresentativeAction( s5, [ (1,3)(2,4), (3,4,5) ], 
>        StandardGeneratorsOfGroup( info, a5 ), OnPairs ) <> fail;
true
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Accessing Subgroups via Tables of Marks}

\FileHeader[8]{tom}

\Declaration{GeneratorsSubgroupsTom}
\Declaration{StraightLineProgramsTom}
\Declaration{IsTableOfMarksWithGens}
\beginexample
gap> a5:= TableOfMarks( "A5" );;  IsTableOfMarksWithGens( a5 );
true
gap> HasGeneratorsSubgroupsTom( a5 );  HasStraightLineProgramsTom( a5 );
false
true
gap> alt5:= TableOfMarks( AlternatingGroup( 5 ) );;
gap> IsTableOfMarksWithGens( alt5 );
true
gap> HasGeneratorsSubgroupsTom( alt5 );  HasStraightLineProgramsTom( alt5 );
true
false
gap> progs:= StraightLineProgramsTom( a5 );;
gap> OrdersTom( a5 );
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
gap> IsCyclicTom( a5, 4 );
false
gap> Length( progs[4] );
2
gap> progs[4][1];
<straight line program>
gap> Display( progs[4][1] );  # first generator of an el. ab group of order 4
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[2]*r[1];
r[4]:= r[3]*r[2]^-1*r[1]*r[3]*r[2]^-1*r[1]*r[2];
# return value:
r[4]
gap> x:= [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ];;
gap> y:= [ [ Z(2^2), Z(2)^0 ], [ 0*Z(2), Z(2^2)^2 ] ];;
gap> res1:= ResultOfStraightLineProgram( progs[4][1], [ x, y ] );
[ [ Z(2)^0, 0*Z(2) ], [ Z(2^2)^2, Z(2)^0 ] ]
gap> res2:= ResultOfStraightLineProgram( progs[4][2], [ x, y ] );
[ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ]
gap> w:= y*x;;
gap> res1 = w*y^-1*x*w*y^-1*x*y;
true
gap> subgrp:= Group( res1, res2 );;  Size( subgrp );  IsCyclic( subgrp );
4
false
\endexample

\Declaration{RepresentativeTom}
\beginexample
gap> RepresentativeTom( a5, 4 );
Group([ (2,3)(4,5), (2,4)(3,5) ])
\endexample

\Declaration{StandardGeneratorsInfo}[tom]!{for tables of marks}
\beginexample
gap> std:= StandardGeneratorsInfo( a5 );
[ rec( generators := "a, b", description := "||a||=2, ||b||=3, ||ab||=5", 
      script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], ATLAS := true ) ]
gap> # Now find standard generators of an isomorphic group.
gap> g:= SL(2,4);;
gap> repeat
>   x:= PseudoRandom( g );
> until Order( x ) = 2;
gap> repeat
>   y:= PseudoRandom( g );
> until Order( y ) = 3 and Order( x*y ) = 5;
gap> # Compute a representative w.r.t. these generators.
gap> RepresentativeTomByGenerators( a5, 4, [ x, y ] );
Group([ [ [ Z(2)^0, Z(2^2) ], [ 0*Z(2), Z(2)^0 ] ],
  [ [ Z(2)^0, Z(2^2)^2 ], [ 0*Z(2), Z(2)^0 ] ] ])
gap> # Show that the new generators are really good.
gap> grp:= UnderlyingGroup( a5 );;
gap> iso:= GroupGeneralMappingByImages( grp, g,
>              GeneratorsOfGroup( grp ), [ x, y ] );;
gap> IsGroupHomomorphism( iso );
true
gap> IsBijective( iso );
true
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{The Interface between Tables of Marks and Character Tables}

The following examples require the {\GAP} Character Table Library
to be available.
If it is not yet loaded then we load it now.

\beginexample
gap> LoadPackage( "ctbllib" );
true
\endexample


\Declaration{FusionCharTableTom}
\beginexample
gap> a5c:= CharacterTable( "A5" );;
gap> fus:= FusionCharTableTom( a5c, a5 );
[ 1, 2, 3, 5, 5 ]
\endexample

\Declaration{PermCharsTom}
\beginexample
gap> PermCharsTom( a5c, a5 );
[ Character( CharacterTable( "A5" ), [ 60, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "A5" ), [ 30, 2, 0, 0, 0 ] ), 
  Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ), 
  Character( CharacterTable( "A5" ), [ 15, 3, 0, 0, 0 ] ), 
  Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ), 
  Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ), 
  Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ), 
  Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ), 
  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ) ]
gap> PermCharsTom( fus, a5 )[1];
[ 60, 0, 0, 0, 0 ]
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Generic Construction of Tables of Marks}

\FileHeader[9]{tom}

\Declaration{TableOfMarksCyclic}
\Declaration{TableOfMarksDihedral}
\Declaration{TableOfMarksFrobenius}

\beginexample
gap> Display( TableOfMarksCyclic( 6 ) );
1:  6
2:  3 3
3:  2 . 2
4:  1 1 1 1

gap> Display( TableOfMarksDihedral( 12 ) );
 1:  12
 2:   6 6
 3:   6 . 2
 4:   6 . . 2
 5:   4 . . . 4
 6:   3 3 1 1 . 1
 7:   2 2 . . 2 . 2
 8:   2 . 2 . 2 . . 2
 9:   2 . . 2 2 . . . 2
10:   1 1 1 1 1 1 1 1 1 1

gap> Display( TableOfMarksFrobenius( 5, 4 ) );
1:  20
2:  10 2
3:   5 1 1
4:   4 . . 4
5:   2 2 . 2 2
6:   1 1 1 1 1 1

\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{The Library of Tables of Marks}

The {\GAP} package `TomLib' provides access to several hundred tables of
marks of almost simple groups and their maximal subgroups.
If this package is installed then the tables from this database can be
accessed via `TableOfMarks' with argument a string (see~"TableOfMarks").
If also the {\GAP} Character Table Library is installed and contains the
ordinary character table of the group for which one wants to fetch the table
of marks then one can also call `TableOfMarks' with argument the character
table.

A list of all names of tables of marks in the database can be obtained via
`AllLibTomNames'.

\beginexample
gap> names:= AllLibTomNames();;
gap> "A5" in names;
true
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E