1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
|
% This file was created automatically from algebra.msk.
% DO NOT EDIT!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A algebra.msk GAP documentation Willem de Graaf
%%
%A @(#)$Id: algebra.msk,v 1.33.2.2 2007/08/28 12:58:50 gap Exp $
%%
%Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
%Y Copyright (C) 2002 The GAP Group
%%
\Chapter{Algebras}
An algebra is a vector space equipped with a bilinear map (multiplication).
This chapter describes the functions in {\GAP} that deal with
general algebras and associative algebras.
Algebras in {\GAP} are vector spaces in a natural way. So all the
functionality for vector spaces (see Chapter "ref:vector spaces") is also
applicable to algebras.
\>`InfoAlgebra' V
is the info class for the functions dealing with algebras
(see~"Info Functions").
%% The algebra functionality was designed and implemented by Thomas Breuer and
%% Willem de Graaf.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Constructing Algebras by Generators}
% AlgebraByGenerators( <F>, <gens>, <zero> ) Left out...
\>Algebra( <F>, <gens> ) F
\>Algebra( <F>, <gens>, <zero> ) F
\>Algebra( <F>, <gens>, "basis" ) F
\>Algebra( <F>, <gens>, <zero>, "basis" ) F
`Algebra( <F>, <gens> )' is the algebra over the division ring
<F>, generated by the vectors in the list <gens>.
If there are three arguments, a division ring <F> and a list <gens>
and an element <zero>,
then `Algebra( <F>, <gens>, <zero> )' is the <F>-algebra
generated by <gens>, with zero element <zero>.
If the last argument is the string `\"basis\"' then the vectors in
<gens> are known to form a basis of the algebra (as an <F>-vector space).
\beginexample
gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;
gap> A:= Algebra( Rationals, [ m ] );
<algebra over Rationals, with 1 generators>
gap> Dimension( A );
2
\endexample
% AlgebraWithOneByGenerators( <F>, <gens>, <zero> ) Left out...
\>AlgebraWithOne( <F>, <gens> ) F
\>AlgebraWithOne( <F>, <gens>, <zero> ) F
\>AlgebraWithOne( <F>, <gens>, "basis" ) F
\>AlgebraWithOne( <F>, <gens>, <zero>, "basis" ) F
`AlgebraWithOne( <F>, <gens> )' is the algebra-with-one over the division
ring <F>, generated by the vectors in the list <gens>.
If there are three arguments, a division ring <F> and a list <gens>
and an element <zero>,
then `AlgebraWithOne( <F>, <gens>, <zero> )' is the <F>-algebra-with-one
generated by <gens>, with zero element <zero>.
If the last argument is the string `\"basis\"' then the vectors in
<gens> are known to form a basis of the algebra (as an <F>-vector space).
\beginexample
gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;
gap> A:= AlgebraWithOne( Rationals, [ m ] );
<algebra-with-one over Rationals, with 1 generators>
gap> Dimension( A );
3
gap> One(A);
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Constructing Algebras as Free Algebras}
\>FreeAlgebra( <R>, <rank> ) F
\>FreeAlgebra( <R>, <rank>, <name> ) F
\>FreeAlgebra( <R>, <name1>, <name2>, ... ) F
is a free (nonassociative) algebra of rank <rank> over the ring <R>.
Here <name>, and <name1>, <name2>,... are optional strings that can be used
to provide names for the generators.
\beginexample
gap> A:= FreeAlgebra( Rationals, "a", "b" );
<algebra over Rationals, with 2 generators>
gap> g:= GeneratorsOfAlgebra( A );
[ (1)*a, (1)*b ]
gap> (g[1]*g[2])*((g[2]*g[1])*g[1]);
(1)*((a*b)*((b*a)*a))
\endexample
\>FreeAlgebraWithOne( <R>, <rank> ) F
\>FreeAlgebraWithOne( <R>, <rank>, <name> ) F
\>FreeAlgebraWithOne( <R>, <name1>, <name2>, ... ) F
is a free (nonassociative) algebra-with-one of rank <rank> over the ring
<R>.
Here <name>, and <name1>, <name2>,... are optional strings that can be used
to provide names for the generators.
\beginexample
gap> A:= FreeAlgebraWithOne( Rationals, 4, "q" );
<algebra-with-one over Rationals, with 4 generators>
gap> GeneratorsOfAlgebra( A );
[ (1)*<identity ...>, (1)*q.1, (1)*q.2, (1)*q.3, (1)*q.4 ]
gap> One( A );
(1)*<identity ...>
\endexample
\>FreeAssociativeAlgebra( <R>, <rank> ) F
\>FreeAssociativeAlgebra( <R>, <rank>, <name> ) F
\>FreeAssociativeAlgebra( <R>, <name1>, <name2>, ... ) F
is a free associative algebra of rank <rank> over the ring <R>.
Here <name>, and <name1>, <name2>,... are optional strings that can be used
to provide names for the generators.
\beginexample
gap> A:= FreeAssociativeAlgebra( GF( 5 ), 4, "a" );
<algebra over GF(5), with 4 generators>
\endexample
\>FreeAssociativeAlgebraWithOne( <R>, <rank> ) F
\>FreeAssociativeAlgebraWithOne( <R>, <rank>, <name> ) F
\>FreeAssociativeAlgebraWithOne( <R>, <name1>, <name2>, ... ) F
is a free associative algebra-with-one of rank <rank> over the ring <R>.
Here <name>, and <name1>, <name2>,... are optional strings that can be used
to provide names for the generators.
\beginexample
gap> A:= FreeAssociativeAlgebraWithOne( Rationals, "a", "b", "c" );
<algebra-with-one over Rationals, with 3 generators>
gap> GeneratorsOfAlgebra( A );
[ (1)*<identity ...>, (1)*a, (1)*b, (1)*c ]
gap> One( A );
(1)*<identity ...>
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Constructing Algebras by Structure Constants}
For an introduction into structure constants and how they are handled
by {\GAP}, we refer to Section "tut:Algebras" of the user's tutorial.
\>EmptySCTable( <dim>, <zero> ) F
\>EmptySCTable( <dim>, <zero>, \"symmetric\" ) F
\>EmptySCTable( <dim>, <zero>, \"antisymmetric\" ) F
`EmptySCTable' returns a structure constants table for an algebra of
dimension <dim>, describing trivial multiplication.
<zero> must be the zero of the coefficients domain.
If the multiplication is known to be (anti)commutative then
this can be indicated by the optional third argument.
For filling up the structure constants table, see "SetEntrySCTable".
\beginexample
gap> EmptySCTable( 2, Zero( GF(5) ), "antisymmetric" );
[ [ [ [ ], [ ] ], [ [ ], [ ] ] ], [ [ [ ], [ ] ], [ [ ], [ ] ] ], -1,
0*Z(5) ]
\endexample
\>SetEntrySCTable( <T>, <i>, <j>, <list> ) F
sets the entry of the structure constants table <T> that describes the
product of the <i>-th basis element with the <j>-th basis element to the
value given by the list <list>.
If <T> is known to be antisymmetric or symmetric then also the value
`<T>[<j>][<i>]' is set.
<list> must be of the form
$[ c_{ij}^{k_1}, k_1, c_{ij}^{k_2}, k_2, \ldots ]$.
The entries at the odd positions of <list> must be compatible with the
zero element stored in <T>.
For convenience, these entries may also be rational numbers that are
automatically replaced by the corresponding elements in the appropriate
prime field in finite characteristic if necessary.
\beginexample
gap> T:= EmptySCTable( 2, 0 );;
gap> SetEntrySCTable( T, 1, 1, [ 1/2, 1, 2/3, 2 ] );
gap> T;
[ [ [ [ 1, 2 ], [ 1/2, 2/3 ] ], [ [ ], [ ] ] ],
[ [ [ ], [ ] ], [ [ ], [ ] ] ], 0, 0 ]
\endexample
\>GapInputSCTable( <T>, <varname> ) F
is a string that describes the structure constants table <T> in terms of
`EmptySCTable' and `SetEntrySCTable'.
The assignments are made to the variable <varname>.
\beginexample
gap> T:= EmptySCTable( 2, 0 );;
gap> SetEntrySCTable( T, 1, 2, [ 1, 2 ] );
gap> SetEntrySCTable( T, 2, 1, [ 1, 2 ] );
gap> GapInputSCTable( T, "T" );
"T:= EmptySCTable( 2, 0 );\nSetEntrySCTable( T, 1, 2, [1,2] );\nSetEntrySCTabl\
e( T, 2, 1, [1,2] );\n"
\endexample
\>TestJacobi( <T> ) F
tests whether the structure constants table <T> satisfies the Jacobi
identity
$v_i*(v_j*v_k)+v_j*(v_k*v_i)+v_k*(v_i*v_j)=0$
for all basis vectors $v_i$ of the underlying algebra,
where $i \leq j \leq k$.
(Thus antisymmetry is assumed.)
The function returns `true' if the Jacobi identity is satisfied,
and a failing triple `[ i, j, k ]' otherwise.
\beginexample
gap> T:= EmptySCTable( 2, 0, "antisymmetric" );;
gap> SetEntrySCTable( T, 1, 2, [ 1, 2 ] );;
gap> TestJacobi( T );
true
\endexample
\>AlgebraByStructureConstants( <R>, <sctable> ) F
\>AlgebraByStructureConstants( <R>, <sctable>, <name> ) F
\>AlgebraByStructureConstants( <R>, <sctable>, <names> ) F
\>AlgebraByStructureConstants( <R>, <sctable>, <name1>, <name2>, ... ) F
returns a free left module $A$ over the ring <R>,
with multiplication defined by the structure constants table <sctable>.
Here <name> and <name1>, <name2>, `...' are optional strings
that can be used to provide names for the elements of the canonical basis
of $A$.
<names> is a list of strings that can be entered instead of the specific
names <name1>, <name2>, `...'.
The vectors of the canonical basis of $A$ correspond to the vectors of
the basis given by <sctable>.
% The algebra generators of $A$ are linearly independent
% abstract vector space generators
% $x_1, x_2, \ldots, x_n$ which are multiplied according to the formula
% $ x_i x_j = \sum_{k=1}^n c_{ijk} x_k$
% where `$c_{ijk}$ = <sctable>[i][j][1][i_k]'
% and `<sctable>[i][j][2][i_k] = k'.
It is *not* checked whether the coefficients in <sctable> are really
elements in <R>.
\beginexample
gap> T:= EmptySCTable( 2, 0 );;
gap> SetEntrySCTable( T, 1, 1, [ 1/2, 1, 2/3, 2 ] );
gap> A:= AlgebraByStructureConstants( Rationals, T );
<algebra of dimension 2 over Rationals>
gap> b:= BasisVectors( Basis( A ) );;
gap> b[1]^2;
(1/2)*v.1+(2/3)*v.2
gap> b[1]*b[2];
0*v.1
\endexample
\>IdentityFromSCTable( <T> ) F
Let <T> be a structure constants table of an algebra $A$ of dimension $n$.
`IdentityFromSCTable( <T> )' is either `fail' or the vector of length
$n$ that contains the coefficients of the multiplicative identity of $A$
with respect to the basis that belongs to <T>.
\beginexample
gap> T:= EmptySCTable( 2, 0 );;
gap> SetEntrySCTable( T, 1, 1, [ 1, 1 ] );;
gap> SetEntrySCTable( T, 1, 2, [ 1, 2 ] );;
gap> SetEntrySCTable( T, 2, 1, [ 1, 2 ] );;
gap> IdentityFromSCTable( T );
[ 1, 0 ]
\endexample
\>QuotientFromSCTable( <T>, <num>, <den> ) F
Let <T> be a structure constants table of an algebra $A$ of dimension $n$.
`QuotientFromSCTable( <T> )' is either `fail' or the vector of length
$n$ that contains the coefficients of the quotient of <num> and <den>
with respect to the basis that belongs to <T>.
We solve the equation system $<num> = x <den>$.
If no solution exists, `fail' is returned.
In terms of the basis $B$ with vectors $b_1, \ldots, b_n$ this means
for $<num> = \sum_{i=1}^n a_i b_i$,
$<den> = \sum_{i=1}^n c_i b_i$,
$x = \sum_{i=1}^n x_i b_i$ that
$a_k = \sum_{i,j} c_i x_j c_{ijk}$ for all $k$.
Here $c_{ijk}$ denotes the structure constants with respect to $B$.
This means that (as a vector) $a=xM$ with
$M_{jk} = \sum_{i=1}^n c_{ijk} c_i$.
\beginexample
gap> T:= EmptySCTable( 2, 0 );;
gap> SetEntrySCTable( T, 1, 1, [ 1, 1 ] );;
gap> SetEntrySCTable( T, 2, 1, [ 1, 2 ] );;
gap> SetEntrySCTable( T, 1, 2, [ 1, 2 ] );;
gap> QuotientFromSCTable( T, [0,1], [1,0] );
[ 0, 1 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Some Special Algebras}
\>QuaternionAlgebra( <F>[, <a>, <b>] ) F
Let <F> be a field or a list of field elements,
let $F$ be the field generated by <F>,
and let <a> and <b> two elements in $F$.
`QuaternionAlgebra' returns a quaternion algebra over
$F$, with parameters <a> and <b>,
i.e., a four-dimensional associative $F$-algebra with basis
$(e,i,j,k)$ and multiplication defined by
$e e = e$, $e i = i e = i$, $e j = j e = j$, $e k = k e = k$,
$i i = <a> e$, $i j = - j i = k$, $i k = - k i = <a> j$,
$j j = <b> e$, $j k = - k j = <b> i$,
$k k = - <a> <b> e$.
The default value for both <a> and <b> is $-1 \in <F>$.
The `GeneratorsOfAlgebra' (see~"GeneratorsOfAlgebra") and
`CanonicalBasis' (see~"CanonicalBasis") value of an algebra constructed
with `QuaternionAlgebra' is the list $[ e, i, j, k ]$.
Two quaternion algebras with the same parameters <a>, <b>
lie in the same family, so it makes sense to consider their intersection
or to ask whether they are contained in each other.
(This is due to the fact that the results of
`QuaternionAlgebra' are cached,
in the global variable `QuaternionAlgebraData'.
The embedding of the field `GaussianRationals' into a quaternion algebra
$A$ over `Rationals' is not uniquely determined.
One can specify one as a vector space homomorphism that maps `1' to the
first algebra generator of $A$, and `E(4)' to one of the others.
\beginexample
gap> QuaternionAlgebra( Rationals );
<algebra-with-one of dimension 4 over Rationals>
\endexample
\>ComplexificationQuat( <vector> ) F
\>ComplexificationQuat( <matrix> ) F
Let $A = e F \oplus i F \oplus j F \oplus k F$ be a quaternion algebra
over the field $F$ of cyclotomics, with basis $(e,i,j,k)$.
If $v = v_1 + v_2 j$ is a row vector over $A$ with $v_1 = e w_1 + i w_2$
and $v_2 = e w_3 + i w_4$ then `ComplexificationQuat( $v$ )' is the
concatenation of $w_1 + `E(4)' w_2$ and $w_3 + `E(4)' w_4$.
If $M = M_1 + M_2 j$ is a matrix over $A$ with $M_1 = e N_1 + i N_2$
and $M_2 = e N_3 + i N_4$ then `ComplexificationQuat( <M> )' is the
block matrix $A$ over $e F \oplus i F$ such that $A(1,1)=N_1 + `E(4)' N_2$,
$A(2,2)=N_1 - `E(4)' N_2$, $A(1,2)=N_3 + `E(4)' N_4$ and $A(2,1)=
- N_3 + `E(4)' N_4$.
% \[ \left( \begin{array}{rr}
% N_1 + `E(4)' N_2 & N_3 + `E(4)' N_4 \\
% - N_3 + `E(4)' N_4 & N_1 - `E(4)' N_2
% \end{array} \right) \]
Then `ComplexificationQuat(<v>)*ComplexificationQuat(<M>)=
ComplexificationQuat(<v>*<M>)', since
$$
v M = v_1 M_1 + v_2 j M_1 + v_1 M_2 j + v_2 j M_2 j
= ( v_1 M_1 - v_2 \overline{M_2} ) %
+ ( v_1 M_2 + v_2 \overline{M_1} ) j\.
$$
\>OctaveAlgebra( <F> ) F
The algebra of octonions over <F>.
\beginexample
gap> OctaveAlgebra( Rationals );
<algebra of dimension 8 over Rationals>
\endexample
\>FullMatrixAlgebra( <R>, <n> ) F
\>MatrixAlgebra( <R>, <n> ) F
\>MatAlgebra( <R>, <n> ) F
is the full matrix algebra $<R>^{<n>\times <n>}$, for a ring <R> and a
nonnegative integer <n>.
\beginexample
gap> A:=FullMatrixAlgebra( Rationals, 20 );
( Rationals^[ 20, 20 ] )
gap> Dimension( A );
400
\endexample
\>NullAlgebra( <R> ) A
The zero-dimensional algebra over <R>.
\beginexample
gap> A:= NullAlgebra( Rationals );
<algebra over Rationals>
gap> Dimension( A );
0
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Subalgebras}
\>Subalgebra( <A>, <gens> ) F
\>Subalgebra( <A>, <gens>, "basis" ) F
is the $F$-algebra generated by <gens>, with parent algebra <A>, where
$F$ is the left acting domain of <A>.
*Note* that being a subalgebra of <A> means to be an algebra, to be
contained in <A>, *and* to have the same left acting domain as <A>.
An optional argument `\"basis\"' may be added if it is known that
the generators already form a basis of the algebra.
Then it is *not* checked whether <gens> really are linearly independent
and whether all elements in <gens> lie in <A>.
\beginexample
gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;
gap> A:= Algebra( Rationals, [ m ] );
<algebra over Rationals, with 1 generators>
gap> B:= Subalgebra( A, [ m^2 ] );
<algebra over Rationals, with 1 generators>
\endexample
\>SubalgebraNC( <A>, <gens> ) F
\>SubalgebraNC( <A>, <gens>, "basis" ) F
`SubalgebraNC' constructs the subalgebra generated by <gens>, only it
does not check whether all elements in <gens> lie in <A>.
\beginexample
gap> m:= RandomMat( 3, 3 );;
gap> A:= Algebra( Rationals, [ m ] );
<algebra over Rationals, with 1 generators>
gap> SubalgebraNC( A, [ IdentityMat( 3, 3 ) ], "basis" );
<algebra of dimension 1 over Rationals>
\endexample
\>SubalgebraWithOne( <A>, <gens> ) F
\>SubalgebraWithOne( <A>, <gens>, "basis" ) F
is the algebra-with-one generated by <gens>, with parent algebra <A>.
The optional third argument `\"basis\"' may be added if it is
known that the elements from <gens> are linearly independent.
Then it is *not* checked whether <gens> really are linearly independent
and whether all elements in <gens> lie in <A>.
\beginexample
gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;
gap> A:= AlgebraWithOne( Rationals, [ m ] );
<algebra-with-one over Rationals, with 1 generators>
gap> B1:= SubalgebraWithOne( A, [ m ] );;
gap> B2:= Subalgebra( A, [ m ] );;
gap> Dimension( B1 );
3
gap> Dimension( B2 );
2
\endexample
\>SubalgebraWithOneNC( <A>, <gens> ) F
\>SubalgebraWithOneNC( <A>, <gens>, "basis" ) F
`SubalgebraWithOneNC' does not check whether all elements in <gens> lie
in <A>.
\beginexample
gap> m:= RandomMat( 3, 3 );; A:= Algebra( Rationals, [ m ] );;
gap> SubalgebraWithOneNC( A, [ m ] );
<algebra-with-one over Rationals, with 1 generators>
\endexample
\>TrivialSubalgebra( <A> ) A
The zero dimensional subalgebra of the algebra <A>.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> B:= TrivialSubalgebra( A );
<algebra over Rationals>
gap> Dimension( B );
0
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Ideals}
For constructing and working with ideals in algebras the same functions
are available as for ideals in rings. So for the precise description of
these functions we refer to Chapter "Rings". Here we give examples
demonstrating the use of ideals in algebras. For an introduction into
the construction of quotient algebras we refer to Chapter "tut:algebras"
of the user's tutorial.
\beginexample
gap> m:= [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0] ];;
gap> A:= AlgebraWithOne( Rationals, [ m ] );;
gap> I:= Ideal( A, [ m ] ); # i.e., the two-sided ideal of `A' generated by `m'.
<two-sided ideal in <algebra-with-one of dimension 3 over Rationals>,
(1 generators)>
gap> Dimension( I );
2
gap> GeneratorsOfIdeal( I );
[ [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0 ] ] ]
gap> BasisVectors( Basis( I ) );
[ [ [ 0, 1, 3/2 ], [ 0, 0, 2 ], [ 0, 0, 0 ] ],
[ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ] ]
\endexample
\beginexample
gap> A:= FullMatrixAlgebra( Rationals, 4 );;
gap> m:= NullMat( 4, 4 );; m[1][4]:=1;;
gap> I:= LeftIdeal( A, [ m ] );
<left ideal in ( Rationals^[ 4, 4 ] ), (1 generators)>
gap> Dimension( I );
4
gap> GeneratorsOfLeftIdeal( I );
[ [ [ 0, 0, 0, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ] ]
\endexample
\beginexample
gap> mats:= [ [[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]] ];;
gap> A:= Algebra( Rationals, mats );;
gap> # Form the two-sided ideal for which `mats[2]' is known to be
gap> # the unique basis element.
gap> I:= Ideal( A, [ mats[2] ], "basis" );
<two-sided ideal in <algebra of dimension 3 over Rationals>, (dimension 1)>
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Categories and Properties of Algebras}
\>IsFLMLOR( <obj> ) C
A FLMLOR (``free left module left operator ring'') in {\GAP} is a ring
that is also a free left module.
Note that this means that being a FLMLOR is not a property a
ring can get,
since a ring is usually not represented as an external left set.
Examples are magma rings (e.g. over the integers) or algebras.
\beginexample
gap> A:= FullMatrixAlgebra( Rationals, 2 );;
gap> IsFLMLOR ( A );
true
\endexample
\>IsFLMLORWithOne( <obj> ) C
A FLMLOR-with-one in {\GAP} is a ring-with-one that is also a free left
module.
Note that this means that being a FLMLOR-with-one is not a property a
ring-with-one can get,
since a ring-with-one is usually not represented as an external left set.
Examples are magma rings-with-one or algebras-with-one (but also over the
integers).
\beginexample
gap> A:= FullMatrixAlgebra( Rationals, 2 );;
gap> IsFLMLORWithOne ( A );
true
\endexample
\>IsAlgebra( <obj> ) C
An algebra in {\GAP} is a ring that is also a left vector space.
Note that this means that being an algebra is not a property a ring can
get, since a ring is usually not represented as an external left set.
\beginexample
gap> A:= MatAlgebra( Rationals, 3 );;
gap> IsAlgebra( A );
true
\endexample
\>IsAlgebraWithOne( <obj> ) C
An algebra-with-one in {\GAP} is a ring-with-one that is also
a left vector space.
Note that this means that being an algebra-with-one is not a property a
ring-with-one can get,
since a ring-with-one is usually not represented as an external left set.
\beginexample
gap> A:= MatAlgebra( Rationals, 3 );;
gap> IsAlgebraWithOne( A );
true
\endexample
\>IsLieAlgebra( <A> ) P
An algebra <A> is called Lie algebra if $a * a = 0$ for all $a$ in <A>
and $( a * ( b * c ) ) + ( b * ( c * a ) ) + ( c * ( a * b ) ) = 0$
for all $a, b, c$ in <A> (Jacobi identity).
\beginexample
gap> A:= FullMatrixLieAlgebra( Rationals, 3 );;
gap> IsLieAlgebra( A );
true
\endexample
\>IsSimpleAlgebra( <A> ) P
is `true' if the algebra <A> is simple, and `false' otherwise. This
function is only implemented for the cases where <A> is an associative or
a Lie algebra. And for Lie algebras it is only implemented for the
case where the ground field is of characteristic $0$.
\beginexample
gap> A:= FullMatrixLieAlgebra( Rationals, 3 );;
gap> IsSimpleAlgebra( A );
false
gap> A:= MatAlgebra( Rationals, 3 );;
gap> IsSimpleAlgebra( A );
true
\endexample
% IsMatrixFLMLOR left out...
% \ Declaration{IsFiniteDimensional}
\>IsFiniteDimensional(<matalg>)!{for matrix algebras} O
returns `true' (always) for a matrix algebra <matalg>, since
matrix algebras are always finite dimensional.
\beginexample
gap> A:= MatAlgebra( Rationals, 3 );;
gap> IsFiniteDimensional( A );
true
\endexample
\>IsQuaternion( <obj> ) C
\>IsQuaternionCollection( <obj> ) C
\>IsQuaternionCollColl( <obj> ) C
`IsQuaternion' is the category of elements in an algebra constructed by
`QuaternionAlgebra'. A collection of quaternions lies in the category
`IsQuaternionCollection'. Finally, a collection of quaternion collections
(e.g., a matrix of quaternions) lies in the category
`IsQuaternionCollColl'.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> b:= BasisVectors( Basis( A ) );
[ e, i, j, k ]
gap> IsQuaternion( b[1] );
true
gap> IsQuaternionCollColl( [ [ b[1], b[2] ], [ b[3], b[4] ] ] );
true
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Attributes and Operations for Algebras}
% GeneratorsOfLeftOperatorRing left out....
% GeneratorsOfLeftOperatorRingWithOne left out....
\>GeneratorsOfAlgebra( <A> ) A
returns a list of elements that generate <A> as an algebra.
\beginexample
gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ];;
gap> A:= AlgebraWithOne( Rationals, [ m ] );
<algebra-with-one over Rationals, with 1 generators>
gap> GeneratorsOfAlgebra( A );
[ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
[ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ] ]
\endexample
\>GeneratorsOfAlgebraWithOne( <A> ) A
returns a list of elements of <A> that generate <A> as an algebra with
one.
\beginexample
gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ];;
gap> A:= AlgebraWithOne( Rationals, [ m ] );
<algebra-with-one over Rationals, with 1 generators>
gap> GeneratorsOfAlgebraWithOne( A );
[ [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ] ]
\endexample
\>ProductSpace( <U>, <V> ) O
is the vector space $\langle u * v ; u \in U, v \in V \rangle$,
where $U$ and $V$ are subspaces of the same algebra.
If $<U> = <V>$ is known to be an algebra then the product space is also
an algebra, moreover it is an ideal in <U>.
If <U> and <V> are known to be ideals in an algebra $A$
then the product space is known to be an algebra and an ideal in $A$.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> b:= BasisVectors( Basis( A ) );;
gap> B:= Subalgebra( A, [ b[4] ] );
<algebra over Rationals, with 1 generators>
gap> ProductSpace( A, B );
<vector space of dimension 4 over Rationals>
\endexample
\>PowerSubalgebraSeries( <A> ) A
returns a list of subalgebras of <A>, the first term of which is <A>;
and every next term is the product space of the previous term with itself.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );
<algebra-with-one of dimension 4 over Rationals>
gap> PowerSubalgebraSeries( A );
[ <algebra-with-one of dimension 4 over Rationals> ]
\endexample
\>AdjointBasis( <B> ) A
Let $x$ be an element of an algebra $A$. Then the adjoint map
of $x$ is the left multiplication by $x$. It is a linear map of $A$.
For the basis <B> of an algebra $A$, this function returns a
particular basis $C$ of the matrix space generated by $ad A$,
(the matrix spaces spanned by the matrices of the left multiplication);
namely a basis consisting of elements of the form $ad x_i$,
where $x_i$ is a basis element of <B>.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> AdjointBasis( Basis( A ) );
Basis( <vector space over Rationals, with 4 generators>,
[ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
[ [ 0, -1, 0, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 0, -1 ], [ 0, 0, 1, 0 ] ],
[ [ 0, 0, -1, 0 ], [ 0, 0, 0, 1 ], [ 1, 0, 0, 0 ], [ 0, -1, 0, 0 ] ],
[ [ 0, 0, 0, -1 ], [ 0, 0, -1, 0 ], [ 0, 1, 0, 0 ], [ 1, 0, 0, 0 ] ] ] )
\endexample
\>IndicesOfAdjointBasis( <B> ) A
Let <A> be an algebra and let <B>
be the basis that is output by `AdjointBasis( Basis( <A> ) )'.
This function
returns a list of indices. If $i$ is an index belonging to this
list, then $ad x_{i}$ is a basis vector of the matrix space spanned
by $ad A$, where $x_{i}$ is the $i$-th basis vector of the basis <B>.
\beginexample
gap> L:= FullMatrixLieAlgebra( Rationals, 3 );;
gap> B:= AdjointBasis( Basis( L ) );;
gap> IndicesOfAdjointBasis( B );
[ 1, 2, 3, 4, 5, 6, 7, 8 ]
\endexample
\>AsAlgebra( <F>, <A> ) O
Returns the algebra over <F> generated by <A>.
\beginexample
gap> V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;
gap> AsAlgebra( Rationals, V );
<algebra of dimension 1 over Rationals>
\endexample
\>AsAlgebraWithOne( <F>, <A> ) O
If the algebra <A> has an identity, then it can be viewed as an
algebra with one over <F>. This function returns this algebra with one.
\beginexample
gap> V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;
gap> A:= AsAlgebra( Rationals, V );;
gap> AsAlgebraWithOne( Rationals, A );
<algebra-with-one over Rationals, with 1 generators>
\endexample
\>AsSubalgebra( <A>, <B> ) O
If all elements of the algebra <B> happen to be contained in the
algebra <A>, then <B> can be viewed as a subalgebra of <A>. This
function returns this subalgebra.
\beginexample
gap> A:= FullMatrixAlgebra( Rationals, 2 );;
gap> V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;
gap> B:= AsAlgebra( Rationals, V );;
gap> BA:= AsSubalgebra( A, B );
<algebra of dimension 1 over Rationals>
\endexample
\>AsSubalgebraWithOne( <A>, <B> ) O
If <B> is an algebra with one, all elements of which happen to be
contained in the algebra with one <A>, then <B> can be viewed as a
subalgebra with one of <A>. This function returns this subalgebra
with one.
\beginexample
gap> A:= FullMatrixAlgebra( Rationals, 2 );;
gap> V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;
gap> B:= AsAlgebra( Rationals, V );;
gap> C:= AsAlgebraWithOne( Rationals, B );;
gap> AC:= AsSubalgebraWithOne( A, C );
<algebra-with-one over Rationals, with 1 generators>
\endexample
\>MutableBasisOfClosureUnderAction( <F>, <Agens>, <from>, <init>, <opr>, %
<zero>, <maxdim> ) F
Let <F> be a ring, <Agens> a list of generators for an <F>-algebra $A$,
and <from> one of `"left"', `"right"', `"both"'; (this means that elements
of $A$ act via multiplication from the respective side(s).)
<init> must be a list of initial generating vectors,
and <opr> the operation (a function of two arguments).
`MutableBasisOfClosureUnderAction' returns a mutable basis of the
<F>-free left module generated by the vectors in <init>
and their images under the action of <Agens> from the respective side(s).
<zero> is the zero element of the desired module.
<maxdim> is an upper bound for the dimension of the closure; if no such
upper bound is known then the value of <maxdim> must be `infinity'.
`MutableBasisOfClosureUnderAction' can be used to compute a basis of an
*associative* algebra generated by the elements in <Agens>. In this
case <from> may be `"left"' or `"right"', <opr> is the multiplication `\*',
and <init> is a list containing either the identity of the algebra or a
list of algebra generators.
(Note that if the algebra has an identity then it is in general not
sufficient to take algebra-with-one generators as <init>,
whereas of course <Agens> need not contain the identity.)
(Note that bases of *not* necessarily associative algebras can be
computed using `MutableBasisOfNonassociativeAlgebra'.)
Other applications of `MutableBasisOfClosureUnderAction' are the
computations of bases for (left/ right/ two-sided) ideals $I$ in an
*associative* algebra $A$ from ideal generators of $I$;
in these cases <Agens> is a list of algebra generators of $A$,
<from> denotes the appropriate side(s),
<init> is a list of ideal generators of $I$, and <opr> is again `\*'.
(Note that bases of ideals in *not* necessarily associative algebras can
be computed using `MutableBasisOfIdealInNonassociativeAlgebra'.)
Finally, bases of right $A$-modules also can be computed using
`MutableBasisOfClosureUnderAction'.
The only difference to the ideal case is that <init> is now a list of
right module generators, and <opr> is the operation of the module.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> g:= GeneratorsOfAlgebra( A );;
gap> B:= MutableBasisOfClosureUnderAction( Rationals, g, "left", [ g[1] ], \*, Zero(A), 4 );
<mutable basis over Rationals, 4 vectors>
gap> BasisVectors( B );
[ e, i, j, k ]
\endexample
\>MutableBasisOfNonassociativeAlgebra( <F>, <Agens>, <zero>, <maxdim> ) F
is a mutable basis of the (not necessarily associative) <F>-algebra that
is generated by <Agens>, has zero element <zero>, and has dimension at
most <maxdim>.
If no finite bound for the dimension is known then `infinity' must be
the value of <maxdim>.
The difference to `MutableBasisOfClosureUnderAction' is that in general
it is not sufficient to multiply just with algebra generators.
(For special cases of nonassociative algebras, especially for Lie
algebras, multiplying with algebra generators suffices.)
\beginexample
gap> L:= FullMatrixLieAlgebra( Rationals, 4 );;
gap> m1:= Random( L );;
gap> m2:= Random( L );;
gap> MutableBasisOfNonassociativeAlgebra( Rationals, [ m1, m2 ], Zero( L ),
> 16 );
<mutable basis over Rationals, 16 vectors>
\endexample
\>MutableBasisOfIdealInNonassociativeAlgebra( <F>, <Vgens>, <Igens>, %
<zero>, <from>, <maxdim> ) F
is a mutable basis of the ideal generated by <Igens> under the action of
the (not necessarily associative) <F>-algebra with vector space
generators <Vgens>.
The zero element of the ideal is <zero>,
<from> is one of `"left"', `"right"', `"both"' (with the same meaning as
in `MutableBasisOfClosureUnderAction'),
and <maxdim> is a known upper bound on the dimension of the ideal;
if no finite bound for the dimension is known then `infinity' must be
the value of <maxdim>.
The difference to `MutableBasisOfClosureUnderAction' is that in general
it is not sufficient to multiply just with algebra generators.
(For special cases of nonassociative algebras, especially for Lie
algebras, multiplying with algebra generators suffices.)
\beginexample
gap> mats:= [ [[ 1, 0 ], [ 0, -1 ]], [[0,1],[0,0]] ];;
gap> A:= Algebra( Rationals, mats );;
gap> basA:= BasisVectors( Basis( A ) );;
gap> B:= MutableBasisOfIdealInNonassociativeAlgebra( Rationals, basA,
> [ mats[2] ], 0*mats[1], "both", infinity );
<mutable basis over Rationals, 1 vectors>
gap> BasisVectors( B );
[ [ [ 0, 1 ], [ 0, 0 ] ] ]
\endexample
\>DirectSumOfAlgebras( <A1>, <A2> ) O
\>DirectSumOfAlgebras( <list> ) O
is the direct sum of the two algebras <A1> and <A2> respectively of the
algebras in the list <list>.
If all involved algebras are associative algebras then the result is also
known to be associative.
If all involved algebras are Lie algebras then the result is also known
to be a Lie algebra.
All involved algebras must have the same left acting domain.
The default case is that the result is a structure constants algebra.
If all involved algebras are matrix algebras, and either both are Lie
algebras or both are associative then the result is again a
matrix algebra of the appropriate type.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> DirectSumOfAlgebras( [A, A, A] );
<algebra of dimension 12 over Rationals>
\endexample
\>FullMatrixAlgebraCentralizer( <F>, <lst> ) F
Let <lst> be a nonempty list of square matrices of the same
dimension $n$, say, with entries in the field <F>.
`FullMatrixAlgebraCentralizer' returns
the centralizer of all matrices in <lst>, inside
the full matrix algebra of $n \times n$ matrices over <F>.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> mats:= List(BasisVectors(Basis( A ) ), x -> AdjointMatrix(Basis(A), x ));;
gap> FullMatrixAlgebraCentralizer( Rationals, mats );
<algebra-with-one of dimension 4 over Rationals>
\endexample
\>RadicalOfAlgebra( <A> ) A
is the maximal nilpotent ideal of <A>, where <A> is an associative
algebra.
\beginexample
gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ];;
gap> A:= AlgebraWithOneByGenerators( Rationals, [ m ] );
<algebra-with-one over Rationals, with 1 generators>
gap> RadicalOfAlgebra( A );
<algebra of dimension 2 over Rationals>
\endexample
\>CentralIdempotentsOfAlgebra( <A> ) A
For an associative algebra <A>, this function returns
a list of central primitive idempotents such that their sum is
the identity element of <A>. Therefore <A> is required to have an
identity.
(This is a synonym of `CentralIdempotentsOfSemiring'.)
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> B:= DirectSumOfAlgebras( [A, A, A] );
<algebra of dimension 12 over Rationals>
gap> CentralIdempotentsOfAlgebra( B );
[ v.9, v.5, v.1 ]
\endexample
\>DirectSumDecomposition( <L> ) A
This function calculates a list of ideals of the algebra <L> such
that <L> is equal to their direct sum. Currently this is only implemented
for semisimple associative algebras, and Lie algebras (semisimple or not).
\beginexample
gap> G:= SymmetricGroup( 4 );;
gap> A:= GroupRing( Rationals, G );
<algebra-with-one over Rationals, with 2 generators>
gap> dd:= DirectSumDecomposition( A );
[ <two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,
<two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,
<two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,
<two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,
<two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,
(1 generators)> ]
gap> List( dd, Dimension );
[ 1, 1, 4, 9, 9 ]
\endexample
\>LeviMalcevDecomposition( <L> ) A
A Levi-Malcev subalgebra of the algebra <L> is a semisimple subalgebra
complementary to the radical of <L>. This function returns
a list with two components. The first component is a Levi-Malcev
subalgebra, the second the radical. This function is implemented for
associative and Lie algebras.
\beginexample
gap> m:= [ [ 1, 2, 0 ], [ 0, 1, 3 ], [ 0, 0, 1] ];;
gap> A:= Algebra( Rationals, [ m ] );;
gap> LeviMalcevDecomposition( A );
[ <algebra of dimension 1 over Rationals>,
<algebra of dimension 2 over Rationals> ]
\endexample
\>Grading( <A> ) A
Let $G$ be an Abelian group and $A$ an algebra. Then $A$ is said to
be graded over $G$ if for every $g \in G$ there is a subspace $A_g$
of $A$ such that $A_g \cdot A_h \subset A_{g+h}$ for $g, h \in G$.
In \GAP~4 a *grading* of an algebra is a record containing the following
components:
\beginitems
`source'&
the Abelian group over which the algebra is graded.
`hom_components'&
a function assigning to each element from the
source a subspace of the algebra.
`min_degree'&
in the case where the algebra is graded over the integers
this is the minimum number for which `hom_components' returns a nonzero
subspace.
`max_degree'&
is analogous to `min_degree'.
\enditems
We note that there are no methods to compute a grading of an
arbitrary algebra; however some algebras get a natural grading when
they are constructed (see "ref:JenningsLieAlgebra",
"ref:NilpotentQuotientOfFpLieAlgebra").
We note also that these components may be not enough to handle
the grading efficiently, and another record component may be needed.
For instance in a Lie algebra $L$ constructed by
`JenningsLieAlgebra', the length of the of the range
`[ Grading(L)!.min_degree .. Grading(L)!.max_degree ]' may be
non-polynomial in the dimension of $L$.
To handle efficiently this situation, an optional component can be
used:
\beginitems
`non_zero_hom_components'&
the subset of `source' for which `hom_components' returns a nonzero
subspace.
\enditems
\beginexample
gap> G:= SmallGroup(3^6, 100 );
<pc group of size 729 with 6 generators>
gap> L:= JenningsLieAlgebra( G );
<Lie algebra of dimension 6 over GF(3)>
gap> g:= Grading( L );
rec( min_degree := 1, max_degree := 9, source := Integers,
hom_components := function( d ) ... end )
gap> g.hom_components( 3 );
<vector space over GF(3), with 1 generators>
gap> g.hom_components( 14 );
<vector space over GF(3), with 0 generators>
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Homomorphisms of Algebras}
Algebra homomorphisms are vector space homomorphisms that preserve the
multiplication.
So the default methods for vector space homomorphisms work,
and in fact there is not much use of the fact that source and range are
algebras, except that preimages and images are algebras (or even ideals)
in certain cases.
\>AlgebraGeneralMappingByImages( <A>, <B>, <gens>, <imgs> ) O
is a general mapping from the $F$-algebra <A> to the $F$-algebra <B>.
This general mapping is defined by mapping the entries in the list <gens>
(elements of <A>) to the entries in the list <imgs> (elements of <B>),
and taking the $F$-linear and multiplicative closure.
<gens> need not generate <A> as an $F$-algebra, and if the
specification does not define a linear and multiplicative mapping then
the result will be multivalued.
Hence, in general it is not a mapping.
For constructing a linear map that is not
necessarily multiplicative, we refer to `LeftModuleHomomorphismByImages'
("ref:leftmodulehomomorphismbyimages").
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> B:= FullMatrixAlgebra( Rationals, 2 );;
gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
gap> f:= AlgebraGeneralMappingByImages( A, B, bA, bB );
[ e, i, j, k ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 1 ], [ 0, 0 ] ],
[ [ 0, 0 ], [ 1, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ]
gap> Images( f, bA[1] );
<add. coset of <algebra over Rationals, with 60 generators>>
\endexample
\>AlgebraHomomorphismByImages( <A>, <B>, <gens>, <imgs> ) F
`AlgebraHomomorphismByImages' returns the algebra homomorphism with
source <A> and range <B> that is defined by mapping the list <gens> of
generators of <A> to the list <imgs> of images in <B>.
If <gens> does not generate <A> or if the homomorphism does not exist
(i.e., if mapping the generators describes only a multi-valued mapping)
then `fail' is returned.
One can avoid the checks by calling `AlgebraHomomorphismByImagesNC',
and one can construct multi-valued mappings with
`AlgebraGeneralMappingByImages'.
\beginexample
gap> T:= EmptySCTable( 2, 0 );;
gap> SetEntrySCTable( T, 1, 1, [1,1] ); SetEntrySCTable( T, 2, 2, [1,2] );
gap> A:= AlgebraByStructureConstants( Rationals, T );;
gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
gap> B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );;
gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
gap> f:= AlgebraHomomorphismByImages( A, B, bA, bB );
[ v.1, v.2 ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ]
gap> Image( f, bA[1]+bA[2] );
[ [ 1, 0 ], [ 0, 1 ] ]
\endexample
\>AlgebraHomomorphismByImagesNC( <A>, <B>, <gens>, <imgs> ) O
`AlgebraHomomorphismByImagesNC' is the operation that is called by the
function `AlgebraHomomorphismByImages'.
Its methods may assume that <gens> generates <A> and that the mapping of
<gens> to <imgs> defines an algebra homomorphism.
Results are unpredictable if these conditions do not hold.
For creating a possibly multi-valued mapping from <A> to <B> that
respects addition, multiplication, and scalar multiplication,
`AlgebraGeneralMappingByImages' can be used.
For the definitions of the algebras `A' and `B' in the next example we refer
to the previous example.
\beginexample
gap> f:= AlgebraHomomorphismByImagesNC( A, B, bA, bB );
[ v.1, v.2 ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ]
\endexample
\>AlgebraWithOneGeneralMappingByImages( <A>, <B>, <gens>, <imgs> ) O
This function is analogous to "AlgebraGeneralMappingByImages";
the only difference being that the identity of <A> is automatically
mapped to the identity of <B>.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );;
gap> B:= FullMatrixAlgebra( Rationals, 2 );;
gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
gap> f:= AlgebraWithOneGeneralMappingByImages(A,B,bA{[2,3,4]},bB{[1,2,3]});
[ i, j, k, e ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 1 ], [ 0, 0 ] ],
[ [ 0, 0 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ]
\endexample
\>AlgebraWithOneHomomorphismByImages( <A>, <B>, <gens>, <imgs> ) F
`AlgebraWithOneHomomorphismByImages' returns the algebra-with-one
homomorphism with source <A> and range <B> that is defined by mapping the
list <gens> of generators of <A> to the list <imgs> of images in <B>.
The difference between an algebra homomorphism and an algebra-with-one
homomorphism is that in the latter case,
it is assumed that the identity of <A> is mapped to the identity of <B>,
and therefore <gens> needs to generate <A> only as an
algebra-with-one.
If <gens> does not generate <A> or if the homomorphism does not exist
(i.e., if mapping the generators describes only a multi-valued mapping)
then `fail' is returned.
One can avoid the checks by calling
`AlgebraWithOneHomomorphismByImagesNC',
and one can construct multi-valued mappings with
`AlgebraWithOneGeneralMappingByImages'.
\beginexample
gap> m1:= NullMat( 2, 2 );; m1[1][1]:=1;;
gap> m2:= NullMat( 2, 2 );; m2[2][2]:=1;;
gap> A:= AlgebraByGenerators( Rationals, [m1,m2] );;
gap> T:= EmptySCTable( 2, 0 );;
gap> SetEntrySCTable( T, 1, 1, [1,1] );
gap> SetEntrySCTable( T, 2, 2, [1,2] );
gap> B:= AlgebraByStructureConstants(Rationals, T);;
gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
gap> f:= AlgebraWithOneHomomorphismByImages( A, B, bA{[1]}, bB{[1]} );
[ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ] -> [ v.1, v.1+v.2 ]
\endexample
\>AlgebraWithOneHomomorphismByImagesNC( <A>, <B>, <gens>, <imgs> ) O
`AlgebraWithOneHomomorphismByImagesNC' is the operation that is called by
the function `AlgebraWithOneHomomorphismByImages'.
Its methods may assume that <gens> generates <A> and that the mapping of
<gens> to <imgs> defines an algebra-with-one homomorphism.
Results are unpredictable if these conditions do not hold.
For creating a possibly multi-valued mapping from <A> to <B> that
respects addition, multiplication, identity, and scalar multiplication,
`AlgebraWithOneGeneralMappingByImages' can be used.
\beginexample
gap> m1:= NullMat( 2, 2 );; m1[1][1]:=1;;
gap> m2:= NullMat( 2, 2 );; m2[2][2]:=1;;
gap> A:= AlgebraByGenerators( Rationals, [m1,m2] );;
gap> T:= EmptySCTable( 2, 0 );;
gap> SetEntrySCTable( T, 1, 1, [1,1] );
gap> SetEntrySCTable( T, 2, 2, [1,2] );
gap> B:= AlgebraByStructureConstants( Rationals, T);;
gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
gap> f:= AlgebraWithOneHomomorphismByImagesNC( A, B, bA{[1]}, bB{[1]} );
[ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ] -> [ v.1, v.1+v.2 ]
\endexample
\>NaturalHomomorphismByIdeal( <A>, <I> ) O
is the homomorphism of algebras provided by the natural
projection map of <A> onto the quotient algebra <A>/<I>.
This map can be used to take pre-images in the original algebra from
elements in the quotient.
\beginexample
gap> L:= FullMatrixLieAlgebra( Rationals, 3 );;
gap> C:= LieCentre( L );
<two-sided ideal in <Lie algebra of dimension 9 over Rationals>, (dimension 1
)>
gap> hom:= NaturalHomomorphismByIdeal( L, C );
<linear mapping by matrix, <Lie algebra of dimension
9 over Rationals> -> <Lie algebra of dimension 8 over Rationals>>
gap> ImagesSource( hom );
<Lie algebra of dimension 8 over Rationals>
\endexample
\>OperationAlgebraHomomorphism( <A>, <B>[, <opr>] ) O
\>OperationAlgebraHomomorphism( <A>, <V>[, <opr>] ) O
`OperationAlgebraHomomorphism' returns an algebra homomorphism from the
$F$-algebra <A> into a matrix algebra over $F$ that describes the
$F$-linear action of <A> on the basis <B> of a free left module
respectively on the free left module <V> (in which case some basis of <V>
is chosen), via the operation <opr>.
The homomorphism need not be surjective.
The default value for <opr> is `OnRight'.
If <A> is an algebra-with-one then the operation homomorphism is an
algebra-with-one homomorphism because the identity of <A> must act
as the identity.
\beginexample
gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
gap> B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );;
gap> V:= FullRowSpace( Rationals, 2 );
( Rationals^2 )
gap> f:=OperationAlgebraHomomorphism( B, Basis( V ), OnRight );
<op. hom. Algebra( Rationals,
[ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ] ) -> matrices of dim. 2>
gap> Image( f, m1 );
[ [ 1, 0 ], [ 0, 0 ] ]
\endexample
\>IsomorphismFpAlgebra( <A> ) A
isomorphism from the algebra <A> onto a finitely presented algebra. Currently this
is only implemented for associative algebras with one.
\beginexample
gap> A:= QuaternionAlgebra( Rationals );
<algebra-with-one of dimension 4 over Rationals>
gap> f:= IsomorphismFpAlgebra( A );
[ e, i, j, k, e ] -> [ [(1)*x.1], [(1)*x.2], [(1)*x.3], [(1)*x.4],
[(1)*<identity ...>] ]
\endexample
\>IsomorphismMatrixAlgebra( <A> ) A
isomorphism from the algebra <A> onto a matrix algebra. Currently this
is only implemented for associative algebras with one.
\beginexample
gap> T:= EmptySCTable( 2, 0 );;
gap> SetEntrySCTable( T, 1, 1, [1,1] ); SetEntrySCTable( T, 2, 2, [1,2] );
gap> A:= AlgebraByStructureConstants( Rationals, T );;
gap> A:= AsAlgebraWithOne( Rationals, A );;
gap> f:=IsomorphismMatrixAlgebra( A );
<op. hom. AlgebraWithOne( Rationals, ... ) -> matrices of dim. 2>
gap> Image( f, BasisVectors( Basis( A ) )[1] );
[ [ 1, 0 ], [ 0, 0 ] ]
\endexample
\>IsomorphismSCAlgebra( <B> ) A
\>IsomorphismSCAlgebra( <A> ) A
For a basis <B> of an algebra $A$, say, `IsomorphismSCAlgebra' returns an
algebra isomorphism from $A$ to an algebra $S$ given by structure
constants (see~"Constructing Algebras by Structure Constants"),
such that the canonical basis of $S$ is the image of <B>.
For an algebra <A>, `IsomorphismSCAlgebra' chooses a basis of <A> and
returns the `IsomorphismSCAlgebra' value for that basis.
\beginexample
gap> IsomorphismSCAlgebra( GF(8) );
CanonicalBasis( GF(2^3) ) -> CanonicalBasis( <algebra of dimension 3 over GF(
2)> )
gap> IsomorphismSCAlgebra( GF(2)^[2,2] );
CanonicalBasis( ( GF(2)^[ 2, 2 ] ) ) -> CanonicalBasis( <algebra of dimension
4 over GF(2)> )
\endexample
\>RepresentativeLinearOperation( <A>, <v>, <w>, <opr> ) O
is an element of the algebra <A> that maps the vector <v>
to the vector <w> under the linear operation described by the function
<opr>. If no such element exists then `fail' is returned.
\beginexample
gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
gap> B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );;
gap> RepresentativeLinearOperation( B, [1,0], [1,0], OnRight );
[ [ 1, 0 ], [ 0, 0 ] ]
gap> RepresentativeLinearOperation( B, [1,0], [0,1], OnRight );
fail
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Representations of Algebras}
An algebra module is a vector space together with an action of an
algebra. So a module over an algebra is constructed by giving generators
of a vector space, and a function for calculating the action of
algebra elements on elements of the vector space. When creating an
algebra module, the generators of the vector space are wrapped up and
given the category `IsLeftAlgebraModuleElement' or
`IsRightModuleElement' if the algebra acts from the left, or right
respectively. (So in the case of a bi-module the elements get
both categories.) Most linear algebra computations are delegated to
the original vector space.
The transition between the original vector space and the corresponding
algebra module is handled by `ExtRepOfObj' and `ObjByExtRep'.
For an element `v' of the algebra module, `ExtRepOfObj( v )' returns
the underlying element of the original vector space. Furthermore, if `vec'
is an element of the original vector space, and `fam' the elements
family of the corresponding algebra module, then `ObjByExtRep( fam, vec )'
returns the corresponding element of the algebra module. Below is an
example of this.
The action of the algebra on elements of the algebra module is constructed
by using the operator `^'. If `x' is an element of an algebra `A', and
`v' an element of a left `A'-module, then `x^v' calculates the result
of the action of `x' on `v'. Similarly, if `v' is an element of
a right `A'-module, then `v^x' calculates the action of `x' on `v'.
\>LeftAlgebraModuleByGenerators( <A>, <op>, <gens> ) O
Constructs the left algebra module over <A> generated by the list of
vectors
<gens>. The action of <A> is described by the function <op>. This must
be a function of two arguments; the first argument is the algebra element,
and the second argument is a vector; it outputs the result of applying
the algebra element to the vector.
\>RightAlgebraModuleByGenerators( <A>, <op>, <gens> ) O
Constructs the right algebra module over <A> generated by the list of
vectors
<gens>. The action of <A> is described by the function <op>. This must
be a function of two arguments; the first argument is a vector, and the
second argument is the algebra element; it outputs the result of applying
the algebra element to the vector.
\>BiAlgebraModuleByGenerators( <A>, <B>, <opl>, <opr>, <gens> ) O
Constructs the algebra bi-module over <A> and <B> generated by the list of
vectors
<gens>. The left action of <A> is described by the function <opl>,
and the right action of <B> by the function <opr>. <opl> must be a
function of two arguments; the first argument is the algebra element,
and the second argument is a vector; it outputs the result of applying
the algebra element on the left to the vector. <opr> must
be a function of two arguments; the first argument is a vector, and the
second argument is the algebra element; it outputs the result of applying
the algebra element on the right to the vector.
\beginexample
gap> A:= Rationals^[3,3];
( Rationals^[ 3, 3 ] )
gap> V:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );
<left-module over ( Rationals^[ 3, 3 ] )>
gap> W:= RightAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );
<right-module over ( Rationals^[ 3, 3 ] )>
gap> M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );
<bi-module over ( Rationals^[ 3, 3 ] ) (left) and ( Rationals^
[ 3, 3 ] ) (right)>
\endexample
In the above examples, the modules `V', `W', and `M' are $3$-dimensional
vector spaces over the rationals.
The algebra `A' acts from the left on `V', from the right on `W',
and from the left and from the right on `M'.
\>LeftAlgebraModule( <A>, <op>, <V> ) O
Constructs the left algebra module over <A> with underlying space <V>.
The action of <A> is described by the function <op>. This must
be a function of two arguments; the first argument is the algebra element,
and the second argument is a vector from <V>; it outputs the result of
applying the algebra element to the vector.
\>RightAlgebraModule( <A>, <op>, <V> ) O
Constructs the right algebra module over <A> with underlying space <V>.
The action of <A> is described by the function <op>. This must
be a function of two arguments; the first argument is a vector, from <V>
and the
second argument is the algebra element; it outputs the result of applying
the algebra element to the vector.
\>BiAlgebraModule( <A>, <B>, <opl>, <opr>, <V> ) O
Constructs the algebra bi-module over <A> and <B> with underlying space
<V>. The left action of <A> is described by the function <opl>,
and the right action of <B> by the function <opr>. <opl> must be a
function of two arguments; the first argument is the algebra element,
and the second argument is a vector from <V>; it outputs the result of
applying
the algebra element on the left to the vector. <opr> must
be a function of two arguments; the first argument is a vector from <V>,
and the
second argument is the algebra element; it outputs the result of applying
the algebra element on the right to the vector.
\beginexample
gap> A:= Rationals^[3,3];;
gap> V:= Rationals^3;
( Rationals^3 )
gap> V:= Rationals^3;;
gap> M:= BiAlgebraModule( A, A, \*, \*, V );
<bi-module over ( Rationals^[ 3, 3 ] ) (left) and ( Rationals^
[ 3, 3 ] ) (right)>
gap> Dimension( M );
3
\endexample
\>GeneratorsOfAlgebraModule( <M> ) A
A list of elements of <M> that generate <M> as an algebra module.
\beginexample
gap> A:= Rationals^[3,3];;
gap> V:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;
gap> GeneratorsOfAlgebraModule( V );
[ [ 1, 0, 0 ] ]
\endexample
\>IsAlgebraModuleElement( <obj> ) C
\>IsAlgebraModuleElementCollection( <obj> ) C
\>IsAlgebraModuleElementFamily( <fam> ) C
Category of algebra module elements. If an object has
`IsAlgebraModuleElementCollection', then it is an algebra module.
If a family has `IsAlgebraModuleElementFamily', then it is a family
of algebra module elements (every algebra module has its own elements
family).
\>IsLeftAlgebraModuleElement( <obj> ) C
\>IsLeftAlgebraModuleElementCollection( <obj> ) C
Category of left algebra module elements. If an object has
`IsLeftAlgebraModuleElementCollection', then it is a left-algebra module.
\>IsRightAlgebraModuleElement( <obj> ) C
\>IsRightAlgebraModuleElementCollection( <obj> ) C
Category of right algebra module elements. If an object has
`IsRightAlgebraModuleElementCollection', then it is a right-algebra module.
\beginexample
gap> A:= Rationals^[3,3];
( Rationals^[ 3, 3 ] )
gap> M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );
<bi-module over ( Rationals^[ 3, 3 ] ) (left) and ( Rationals^
[ 3, 3 ] ) (right)>
gap> vv:= BasisVectors( Basis( M ) );
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
gap> IsLeftAlgebraModuleElement( vv[1] );
true
gap> IsRightAlgebraModuleElement( vv[1] );
true
gap> vv[1] = [ 1, 0, 0 ];
false
gap> ExtRepOfObj( vv[1] ) = [ 1, 0, 0 ];
true
gap> ObjByExtRep( ElementsFamily( FamilyObj( M ) ), [ 1, 0, 0 ] ) in M;
true
gap> xx:= BasisVectors( Basis( A ) );;
gap> xx[4]^vv[1]; # left action
[ 0, 1, 0 ]
gap> vv[1]^xx[2]; # right action
[ 0, 1, 0 ]
\endexample
\>LeftActingAlgebra( <V> ) A
Here <V> is a left-algebra module; this function returns the algebra
that acts from the left on <V>.
\>RightActingAlgebra( <V> ) A
Here <V> is a right-algebra module; this function returns the algebra
that acts from the right on <V>.
\>ActingAlgebra( <V> ) O
Here <V> is an algebra module; this function returns the algebra
that acts on <V> (this is the same as `LeftActingAlgebra( <V> )' if <V> is
a left module, and `RightActingAlgebra( <V> )' if <V> is a right module;
it will signal an error if <V> is a bi-module).
\beginexample
gap> A:= Rationals^[3,3];;
gap> M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );;
gap> LeftActingAlgebra( M );
( Rationals^[ 3, 3 ] )
gap> RightActingAlgebra( M );
( Rationals^[ 3, 3 ] )
gap> V:= RightAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;
gap> ActingAlgebra( V );
( Rationals^[ 3, 3 ] )
\endexample
\>IsBasisOfAlgebraModuleElementSpace( <B> ) C
If a basis <B> lies in the category `IsBasisOfAlgebraModuleElementSpace',
then
<B> is a basis of a subspace of an algebra module. This means that
<B> has the record field `<B>!.delegateBasis' set. This last object
is a basis of the corresponding subspace of the vector space underlying
the algebra module (i.e., the vector
space spanned by all `ExtRepOfObj( v )' for `v' in
the algebra module).
\beginexample
gap> A:= Rationals^[3,3];;
gap> M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );;
gap> B:= Basis( M );
Basis( <3-dimensional bi-module over ( Rationals^
[ 3, 3 ] ) (left) and ( Rationals^[ 3, 3 ] ) (right)>,
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] )
gap> IsBasisOfAlgebraModuleElementSpace( B );
true
gap> B!.delegateBasis;
SemiEchelonBasis( <vector space of dimension 3 over Rationals>,
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] )
\endexample
\>MatrixOfAction( <B>, <x> ) O
\>MatrixOfAction( <B>, <x>, <side> ) O
Here <B> is a basis of an algebra module and <x> is an element
of the algebra that acts on this module. This function returns
the matrix of the action of <x> with respect to <B>. If <x> acts
from the left, then the coefficients of the images of the basis
elements of <B> (under the action of <x>) are the columns of the output.
If <x> acts from the
right, then they are the rows of the output.
If the module is a bi-module, then the third parameter <side> must
be specified. This is the string `left', or `right' depending whether
<x> acts from the left or the right.
\beginexample
gap> M:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;
gap> x:= Basis(A)[3];
[ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]
gap> MatrixOfAction( Basis( M ), x );
[ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]
\endexample
\>SubAlgebraModule( <M>, <gens> [, <"basis">] ) O
is the sub-module of the algebra module <M>, generated by the vectors
in <gens>. If as an optional argument the string `basis' is added, then
it is
assumed that the vectors in <gens> form a basis of the submodule.
\beginexample
gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
gap> A:= Algebra( Rationals, [ m1, m2 ] );;
gap> M:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0 ], [ 0, 1 ] ] );
<left-module over <algebra over Rationals, with 2 generators>>
gap> bb:= BasisVectors( Basis( M ) );
[ [ 1, 0 ], [ 0, 1 ] ]
gap> V:= SubAlgebraModule( M, [ bb[1] ] );
<left-module over <algebra over Rationals, with 2 generators>>
gap> Dimension( V );
1
\endexample
\>LeftModuleByHomomorphismToMatAlg( <A>, <hom> ) O
Here <A> is an algebra and <hom> a homomorphism from <A> into a matrix
algebra. This function returns the left <A>-module defined by the
homomorphism <hom>.
\>RightModuleByHomomorphismToMatAlg( <A>, <hom> ) O
Here <A> is an algebra and <hom> a homomorphism from <A> into a matrix
algebra. This function returns the right <A>-module defined by the
homomorphism <hom>.
First we produce a structure constants algebra with basis elements
$x$, $y$, $z$ such that $x^2 = x$, $y^2 = y$, $xz = z$, $zy = z$
and all other products are zero.
\beginexample
gap> T:= EmptySCTable( 3, 0 );;
gap> SetEntrySCTable( T, 1, 1, [ 1, 1 ]);
gap> SetEntrySCTable( T, 2, 2, [ 1, 2 ]);
gap> SetEntrySCTable( T, 1, 3, [ 1, 3 ]);
gap> SetEntrySCTable( T, 3, 2, [ 1, 3 ]);
gap> A:= AlgebraByStructureConstants( Rationals, T );
<algebra of dimension 3 over Rationals>
\endexample
Now we construct an isomorphic matrix algebra.
\beginexample
gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
gap> m3:= NullMat( 2, 2 );; m3[1][2]:= 1;;
gap> B:= Algebra( Rationals, [ m1, m2, m3 ] );
<algebra over Rationals, with 3 generators>
\endexample
Finally we construct the homomorphism and the corresponding right module.
\beginexample
gap> f:= AlgebraHomomorphismByImages( A, B, Basis(A), [ m1, m2, m3 ] );;
gap> RightModuleByHomomorphismToMatAlg( A, f );
<right-module over <algebra of dimension 3 over Rationals>>
\endexample
\>AdjointModule( <A> ) A
returns the <A>-module defined by the left action of <A> on itself.
\beginexample
gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
gap> m3:= NullMat( 2, 2 );; m3[1][2]:= 1;;
gap> A:= Algebra( Rationals, [ m1, m2, m3 ] );
<algebra over Rationals, with 3 generators>
gap> V:= AdjointModule( A );
<3-dimensional left-module over <algebra of dimension 3 over Rationals>>
gap> v:= Basis( V )[3];
[ [ 0, 1 ], [ 0, 0 ] ]
gap> W:= SubAlgebraModule( V, [ v ] );
<left-module over <algebra of dimension 3 over Rationals>>
gap> Dimension( W );
1
\endexample
% One would be tempted to call `W' a left ideal in `V',
% but in the current implementation, neither `V' nor `W' are themselves
% algebras; note that the element `v', although looking like a matrix,
% cannot be multiplied with itself.
\>FaithfulModule( <A> ) A
returns a faithful finite-dimensional left-module over the algebra <A>.
This is only implemented for associative algebras, and for Lie algebras
of characteristic $0$. (It may also work for certain Lie algebras
of characteristic $p>0$.)
\beginexample
gap> T:= EmptySCTable( 2, 0 );;
gap> A:= AlgebraByStructureConstants( Rationals, T );
<algebra of dimension 2 over Rationals>
\endexample
`A' is a $2$-dimensional algebra where all products are zero.
\beginexample
gap> V:= FaithfulModule( A );
<left-module over <algebra of dimension 2 over Rationals>>
gap> vv:= BasisVectors( Basis( V ) );
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
gap> xx:= BasisVectors( Basis( A ) );
[ v.1, v.2 ]
gap> xx[1]^vv[3];
[ 1, 0, 0 ]
\endexample
\>ModuleByRestriction( <V>, <sub> ) O
\>ModuleByRestriction( <V>, <subl>, <subr> ) O
Here <V> is an algebra module and <sub> is a subalgebra
of the acting algebra of <V>. This function returns the
module that is the restriction of <V> to <sub>. So it has the
same underlying vector space as <V>, but the acting algebra is
<sub>. If two subalgebras are given then <V> is assumed to be a
bi-module, and <subl> a subalgebra of the algebra acting on the left,
and <subr> a subalgebra of the algebra acting on the right.
\beginexample
gap> A:= Rationals^[3,3];;
gap> V:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;
gap> B:= Subalgebra( A, [ Basis(A)[1] ] );
<algebra over Rationals, with 1 generators>
gap> W:= ModuleByRestriction( V, B );
<left-module over <algebra over Rationals, with 1 generators>>
\endexample
\>NaturalHomomorphismBySubAlgebraModule( <V>, <W> ) O
Here <V> must be a sub-algebra module of <V>. This function returns
the projection from <V> onto `<V>/<W>'. It is a linear map, that is
also a module homomorphism. As usual images can be formed with
`Image( f, v )' and pre-images with `PreImagesRepresentative( f, u )'.
The quotient module can also be formed
by entering `<V>/<W>'.
\beginexample
gap> A:= Rationals^[3,3];;
gap> B:= DirectSumOfAlgebras( A, A );
<algebra over Rationals, with 6 generators>
gap> T:= StructureConstantsTable( Basis( B ) );;
gap> C:= AlgebraByStructureConstants( Rationals, T );
<algebra of dimension 18 over Rationals>
gap> V:= AdjointModule( C );
<left-module over <algebra of dimension 18 over Rationals>>
gap> W:= SubAlgebraModule( V, [ Basis(V)[1] ] );
<left-module over <algebra of dimension 18 over Rationals>>
gap> f:= NaturalHomomorphismBySubAlgebraModule( V, W );
<linear mapping by matrix, <
18-dimensional left-module over <algebra of dimension 18 over Rationals>> -> <
9-dimensional left-module over <algebra of dimension 18 over Rationals>>>
gap> quo:= ImagesSource( f ); # i.e., the quotient module
<9-dimensional left-module over <algebra of dimension 18 over Rationals>>
gap> v:= Basis( quo )[1];
[ 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
gap> PreImagesRepresentative( f, v );
v.4
gap> Basis( C )[4]^v;
[ 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
\endexample
\>DirectSumOfAlgebraModules( <list> ) O
\>DirectSumOfAlgebraModules( <V>, <W> ) O
Here <list> must be a list of algebra modules. This function returns the
direct sum of the elements in the list (as an algebra module).
The modules must be defined over the same algebras.
In the second form is short for `DirectSumOfAlgebraModules( [ <V>, <W> ] )'
\beginexample
gap> A:= FullMatrixAlgebra( Rationals, 3 );;
gap> V:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [1,0,0] ] );;
gap> W:= DirectSumOfAlgebraModules( V, V );
<6-dimensional left-module over ( Rationals^[ 3, 3 ] )>
gap> BasisVectors( Basis( W ) );
[ ( [ 1, 0, 0 ] )(+)( [ 0, 0, 0 ] ), ( [ 0, 1, 0 ] )(+)( [ 0, 0, 0 ] ),
( [ 0, 0, 1 ] )(+)( [ 0, 0, 0 ] ), ( [ 0, 0, 0 ] )(+)( [ 1, 0, 0 ] ),
( [ 0, 0, 0 ] )(+)( [ 0, 1, 0 ] ), ( [ 0, 0, 0 ] )(+)( [ 0, 0, 1 ] ) ]
\endexample
\>TranslatorSubalgebra( <M>, <U>, <W> ) O
Here <M> is an algebra module, and <U> and <W> are two subspaces of <M>.
Let <A> be the algebra acting on <M>. This function returns the subspace
of elements of <A> that map <U> into <W>. If <W> is a sub-algebra-module
(i.e., closed under the action of <A>), then this space is a subalgebra
of <A>.
This function works for left, or right modules over a
finite-dimensional algebra. We
stress that it is not checked whether <U> and <W> are indeed subspaces
of <M>. If this is not the case nothing is guaranteed about the behaviour
of the function.
\beginexample
gap> A:= FullMatrixAlgebra( Rationals, 3 );
( Rationals^[ 3, 3 ] )
gap> V:= Rationals^[3,2];
( Rationals^[ 3, 2 ] )
gap> M:= LeftAlgebraModule( A, \*, V );
<left-module over ( Rationals^[ 3, 3 ] )>
gap> bm:= Basis(M);;
gap> U:= SubAlgebraModule( M, [ bm[1] ] );
<left-module over ( Rationals^[ 3, 3 ] )>
gap> TranslatorSubalgebra( M, U, M );
<algebra of dimension 9 over Rationals>
gap> W:= SubAlgebraModule( M, [ bm[4] ] );
<left-module over ( Rationals^[ 3, 3 ] )>
gap> T:=TranslatorSubalgebra( M, U, W );
<algebra of dimension 0 over Rationals>
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E
|