File: numtheor.tex

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (610 lines) | stat: -rw-r--r-- 19,692 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
% This file was created automatically from numtheor.msk.
% DO NOT EDIT!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A  numtheor.msk                GAP documentation            Martin Schoenert
%A                                                           Alexander Hulpke
%%
%A  @(#)$Id: numtheor.msk,v 1.17.2.2 2005/05/10 08:55:31 gap Exp $
%%
%Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
%Y  Copyright (C) 2002 The GAP Group
%%
\Chapter{Number Theory}

\index{prime residue group}

{\GAP} provides a couple of elementary number theoretic functions.
Most of these deal with the group of integers coprime to $m$,
called the *prime residue group*.
$\phi(m)$ (see~"Phi") is the order of this group,
$\lambda(m)$ (see~"Lambda") the exponent.
If and only if $m$ is 2, 4, an odd prime power $p^e$,
or twice an odd prime power $2 p^e$, this group is cyclic.
In this case the generators  of the group, i.e., elements of order
$\phi(m)$, are called *primitive roots* (see~"PrimitiveRootMod",
"IsPrimitiveRootMod").

Note that neither the arguments nor the return values of the functions
listed below are groups or group elements in the sense of {\GAP}.
The arguments are simply integers.



\>`InfoNumtheor' V

`InfoNumtheor' is the info class (see~"Info Functions") for the
functions in the number theory chapter.



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Prime Residues}

\>PrimeResidues( <m> )!{function} F

`PrimeResidues' returns the set of integers from the range `0..Abs(<m>)-1'
that are coprime to the integer <m>.

`Abs(<m>)' must be less than $2^{28}$, otherwise the set would probably be
too large anyhow.


\index{prime residue group}

\beginexample
gap> PrimeResidues( 0 );  PrimeResidues( 1 );  PrimeResidues( 20 );
[  ]
[ 0 ]
[ 1, 3, 7, 9, 11, 13, 17, 19 ]
\endexample

\>Phi( <m> ) O

`Phi' returns the number $\phi(<m>)$ of positive integers less than the
positive integer <m> that are coprime to <m>.

Suppose that $m = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$.  Then  $\phi(m)$
is $p_1^{e_1-1} (p_1-1) p_2^{e_2-1} (p_2-1) \cdots  p_k^{e_k-1} (p_k-1)$.


\index{order!of the prime residue group}
\index{prime residue group!order}
\atindex{Euler's totient function}{@Euler's totient function}

\beginexample
gap> Phi( 12 );
4
gap> Phi( 2^13-1 );  # this proves that 2^(13)-1 is a prime
8190
gap> Phi( 2^15-1 );
27000
\endexample

\>Lambda( <m> ) O

`Lambda' returns the exponent $\lambda(<m>)$ of the group of prime
residues modulo the integer <m>.

$\lambda(<m>)$ is the smallest positive integer $l$ such that for every
$a$ relatively prime to <m> we have $a^l \equiv 1 \pmod{<m>}$.
Fermat's theorem asserts $a^{\phi(<m>)} \equiv 1 \pmod{<m>}$;
thus $\lambda(m)$ divides $\phi(m)$ (see~"Phi").

Carmichael's theorem states that $\lambda$ can be computed as follows:
$\lambda(2) = 1$, $\lambda(4) = 2$ and $\lambda(2^e) = 2^{e-2}$
if $3 \le e$,
$\lambda(p^e) = (p-1) p^{e-1}$ (i.e. $\phi(m)$) if $p$ is an odd prime
and
$\lambda(n*m) = `Lcm'( \lambda(n), \lambda(m) )$ if $n, m$ are coprime.

Composites for which $\lambda(m)$ divides $m - 1$ are called Carmichaels.
If $6k+1$, $12k+1$ and $18k+1$ are primes their product is such a number.
There are only  1547  Carmichaels below $10^{10}$ but  455052511  primes.


\atindex{Carmichael's lambda function}{@Carmichael's lambda function}
\index{prime residue group!exponent}
\index{exponent!of the prime residue group}

\beginexample
gap> Lambda( 10 );
4
gap> Lambda( 30 );
4
gap> Lambda( 561 );  # 561 is the smallest Carmichael number
80
\endexample

\>GeneratorsPrimeResidues( <n> ) F

Let <n> be a positive integer.
`GeneratorsPrimeResidues' returns a description of generators of the
group of prime residues modulo <n>.
The return value is a record with components
\beginitems
`primes': &
    a list of the prime factors of <n>,

`exponents': &
    a list of the exponents of these primes in the factorization of <n>,
    and

`generators': &
    a list describing generators of the group of prime residues;
    for the prime factor $2$, either a primitive root or a list of two
    generators is stored,
    for each other prime factor of <n>, a primitive root is stored.
\enditems



\beginexample
gap> GeneratorsPrimeResidues( 1 );
rec( primes := [  ], exponents := [  ], generators := [  ] )
gap> GeneratorsPrimeResidues( 4*3 );
rec( primes := [ 2, 3 ], exponents := [ 2, 1 ], generators := [ 7, 5 ] )
gap> GeneratorsPrimeResidues( 8*9*5 );
rec( primes := [ 2, 3, 5 ], exponents := [ 3, 2, 1 ], 
  generators := [ [ 271, 181 ], 281, 217 ] )
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Primitive Roots and Discrete Logarithms}

\>OrderMod( <n>, <m> ) F

`OrderMod' returns the multiplicative order of the integer <n> modulo the
positive integer <m>.
If <n> and <m> are not coprime the order of <n> is not defined
and `OrderMod' will return 0.

If <n> and <m> are relatively prime the multiplicative order of <n>
modulo <m> is the smallest positive integer $i$ such that 
$<n>^i \equiv 1 \pmod{<m>}$.
If the group of prime residues modulo <m> is cyclic then each element
of maximal order is called a primitive root modulo <m>
(see~"IsPrimitiveRootMod").

`OrderMod' usually spends most of its time factoring <m> and $\phi(<m>)$
(see~"FactorsInt").


\index{multiplicative order of an integer}

\beginexample
gap> OrderMod( 2, 7 );
3
gap> OrderMod( 3, 7 );  # 3 is a primitive root modulo 7
6
\endexample

\>LogMod( <n>, <r>, <m> ) F
\>LogModShanks( <n>, <r>, <m> ) F

computes the discrete <r>-logarithm of the integer <n> modulo the integer
<m>.
It returns a number <l> such that $<r>^{<l>}\equiv <n>\pmod{<m>}$
if such a number exists.
Otherwise `fail' is returned.

`LogModShanks' uses the Baby Step - Giant Step Method of Shanks (see for
example section 5.4.1 in \cite{Coh93} and in general
requires more memory than a call to `LogMod'.


\index{logarithm!discrete}

\beginexample
gap> l:= LogMod( 2, 5, 7 );  5^l mod 7 = 2;
4
true
gap> LogMod( 1, 3, 3 );  LogMod( 2, 3, 3 );
0
fail
\endexample

\>PrimitiveRootMod( <m>[, <start>] ) F

`PrimitiveRootMod' returns the smallest primitive root modulo the
positive integer <m> and `fail' if no such primitive root exists.
If the optional second integer argument <start> is given
`PrimitiveRootMod' returns the smallest primitive root that is strictly
larger than <start>.


\index{primitive root modulo an integer}
\index{prime residue group!generator}
\index{generator!of the prime residue group}

\beginexample
gap> PrimitiveRootMod( 409 );      # largest primitive root for a prime less than 2000
21
gap> PrimitiveRootMod( 541, 2 );
10
gap> PrimitiveRootMod( 337, 327 ); # 327 is the largest primitive root mod 337
fail
gap> PrimitiveRootMod( 30 );       # there exists no primitive root modulo 30
fail
\endexample

\>IsPrimitiveRootMod( <r>, <m> ) F

`IsPrimitiveRootMod' returns  `true' if the  integer <r>  is a  primitive
root modulo the positive integer <m> and `false' otherwise.   If  <r>  is
less than 0 or larger than <m> it is replaced by its remainder.


\index{test!for a primitive root}
\index{prime residue group!generator}
\index{generator!of the prime residue group}

\beginexample
gap> IsPrimitiveRootMod( 2, 541 );
true
gap> IsPrimitiveRootMod( -539, 541 );  # same computation as above;
true
gap> IsPrimitiveRootMod( 4, 541 );
false
gap> ForAny( [1..29], r -> IsPrimitiveRootMod( r, 30 ) );
false
gap> # there is no a primitive root modulo 30
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Roots Modulo Integers}

\>Jacobi( <n>, <m> ) F

`Jacobi'  returns  the value of  the *Jacobi symbol*  of  the integer <n>
modulo the integer <m>.

Suppose that $<m> = p_1 p_2 \cdots p_k$ is a product of primes, not
necessarily distinct.  Then for <n> coprime to <m>  the Jacobi  symbol is
defined by $J(<n>/<m>) =  L(<n>/p_1) L(<n>/p_2) \cdots  L(<n>/p_k)$, where
$L(<n>/p)$ is the Legendre symbol (see~"Legendre").   By convention 
$J(<n>/1) = 1$.  If the gcd of <n> and <m> is larger than 1 we define 
$J(<n>/<m>) = 0$.

If <n> is a *quadratic residue* modulo <m>, i.e., if there exists an $r$
such that  $r^2 \equiv <n> \pmod{<m>}$  then $J(<n>/<m>) = 1$.  However,
$J(<n>/<m>) = 1$ implies the existence of such an $r$ only if <m> is a 
prime.

`Jacobi' is very efficient, even for large values of <n> and <m>,  it  is
about as fast as the Euclidean algorithm (see~"Gcd").


\index{quadratic residue}
\index{residue!quadratic}

\beginexample
gap> Jacobi( 11, 35 );  # 9^2 = 11 mod 35
1
gap> Jacobi( 6, 35 );   # it is -1, thus there is no r such that r^2 = 6 mod 35
-1
gap> Jacobi( 3, 35 );   # it is 1 even though there is no r with r^2 = 3 mod 35
1
\endexample

\>Legendre( <n>, <m> ) F

`Legendre' returns  the value of the *Legendre symbol* of the integer <n>
modulo the positive integer <m>.

The value  of  the Legendre  symbol $L(<n>/<m>)$ is 1 if  <n> is a 
*quadratic residue* modulo <m>, i.e., if there exists an integer $r$ such
that $r^2 \equiv n \pmod{<m>}$ and $-1$ otherwise.

If a root of <n> exists it can be found by `RootMod' (see "RootMod").

While the value of the Legendre symbol usually  is only defined for <m> a
prime, we have extended the  definition to include composite moduli  too.
The  Jacobi  symbol  (see "Jacobi")  is    another generalization  of the
Legendre symbol for composite moduli that is  much  cheaper  to  compute,
because it does not need the factorization of <m> (see "FactorsInt").

A description of the Jacobi symbol, the Legendre symbol, and related
topics can be found  in \cite{Baker84}.


\index{quadratic residue}
\index{residue!quadratic}

\beginexample
gap> Legendre( 5, 11 );  # 4^2 = 5 mod 11
1
gap> Legendre( 6, 11 );  # it is -1, thus there is no r such that r^2 = 6 mod 11
-1
gap> Legendre( 3, 35 );  # it is -1, thus there is no r such that r^2 = 3 mod 35
-1
\endexample

\>RootMod( <n>[, <k>], <m> ) F

`RootMod' computes a <k>th root of the integer <n> modulo the positive
integer <m>, i.e., a $r$ such that $r^{<k>} \equiv <n> \pmod{<m>}$.
If no such root exists `RootMod' returns `fail'.
If only the arguments <n> and <m> are given,
the default value for <k> is $2$.

In the current implementation <k> must be a prime.

A square root of <n> exists only if `Legendre(<n>,<m>) = 1'
(see~"Legendre").
If <m> has $r$ different prime factors then  there are $2^r$  different
roots of <n> mod  <m>.  It is  unspecified  which  one `RootMod' returns.
You can, however, use `RootsMod' (see~"RootsMod") to compute the full set
of roots.

`RootMod' is efficient even for large values of <m>, in fact the  most
time is usually spent factoring <m> (see "FactorsInt").


\index{quadratic residue}
\index{residue!quadratic}
\index{root!of an integer modulo another}

\beginexample
gap> RootMod( 64, 1009 );  # note 'RootMod' does not return 8 in this case but -8;
1001
gap> RootMod( 64, 3, 1009 );
518
gap> RootMod( 64, 5, 1009 );
656
gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
>          x -> x mod 1009 );  # set of all square roots of 64 mod 1009
[ 1001, 8 ]
\endexample

\>RootsMod( <n>[, <k>], <m> ) F

`RootsMod' computes the set of <k>th roots of the integer <n>
modulo the positive integer <m>, i.e., a $r$ such that 
$r^{<k>} \equiv <n> \pmod{<m>}$.
If only the arguments <n> and <m> are given,
the default value for <k> is $2$.

In the current implementation <k> must be a prime.



\beginexample
gap> RootsMod( 1, 7*31 );  # the same as `RootsUnityMod( 7*31 )'
[ 1, 92, 125, 216 ]
gap> RootsMod( 7, 7*31 );
[ 21, 196 ]
gap> RootsMod( 5, 7*31 );
[  ]
gap> RootsMod( 1, 5, 7*31 );
[ 1, 8, 64, 78, 190 ]
\endexample

\>RootsUnityMod( [<k>, ] <m> ) F

`RootsUnityMod' returns the set of <k>-th roots of unity modulo the
positive integer <m>, i.e.,
the list of all solutions $r$ of $r^{<k>} \equiv <n> \pmod{<m>}$.
If only the argument <m> is given, the default value for <k> is $2$.

In  general  there are  $<k>^n$ such  roots if  the  modulus <m> has  $n$
different prime factors $p$ such that $p \equiv 1 \pmod{<k>}$. If $<k>^2$
divides <m> then there are $<k>^{n+1}$ such roots; and especially if 
$<k> = 2$  and 8 divides <m> there are $2^{n+2}$ such roots.

In the current implementation <k> must be a prime.


\index{modular roots}
\index{root!of 1 modulo an integer}

\beginexample
gap> RootsUnityMod( 7*31 );  RootsUnityMod( 3, 7*31 );
[ 1, 92, 125, 216 ]
[ 1, 25, 32, 36, 67, 149, 156, 191, 211 ]
gap> RootsUnityMod( 5, 7*31 );
[ 1, 8, 64, 78, 190 ]
gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
>          x -> x mod 1009 );  # set of all square roots of 64 mod 1009
[ 1001, 8 ]
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Multiplicative Arithmetic Functions}

\>Sigma( <n> ) O

`Sigma' returns the sum of the positive divisors of the nonzero integer
<n>.

`Sigma' is a multiplicative arithmetic function, i.e., if <n> and $m$ are
relatively prime we have $\sigma(<n> m) = \sigma(<n>) \sigma(m)$.

Together with the formula $\sigma(p^e) = (p^{e+1}-1) / (p-1)$ this allows
us to compute $\sigma(<n>)$.

Integers <n> for which  $\sigma(<n>)=2  <n>$  are  called  perfect.  Even
perfect integers are exactly of  the  form  $2^{<n>-1}(2^{<n>}-1)$  where
$2^{<n>}-1$ is prime. Primes of the form $2^{<n>}-1$ are called *Mersenne
primes*, the known ones are obtained for <n> $=$ 2, 3, 5, 7, 13, 17,  19,
31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689,
9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,  132049,  216091,
756839, and 859433. It is not known whether odd perfect  integers  exist,
however~\cite{BC89} show that any such integer must  have  at  least  300
decimal digits.

`Sigma' usually spends most of its time factoring <n> (see~"FactorsInt").



\beginexample
gap> Sigma( 1 );
1
gap> Sigma( 1009 );  # 1009 is a prime
1010
gap> Sigma( 8128 ) = 2*8128;  # 8128 is a perfect number
true
\endexample


\>Tau( <n> ) O

`Tau' returns the number of the positive divisors of the nonzero integer
<n>.

`Tau' is a multiplicative arithmetic function, i.e., if <n> and  $m$  are
relative prime we have $\tau(<n> m) = \tau(<n>) \tau(m)$.
Together with the formula $\tau(p^e) = e+1$ this allows us to compute
$\tau(<n>)$.

`Tau' usually spends most of its time factoring <n> (see~"FactorsInt").



\beginexample
gap> Tau( 1 );
1
gap> Tau( 1013 );  # thus 1013 is a prime
2
gap> Tau( 8128 );
14
gap> Tau( 36 );  # the result is odd if and only if the argument is a perfect square
9
\endexample

\>MoebiusMu( <n> ) F

`MoebiusMu'  computes the value  of  Moebius  inversion function for  the
nonzero integer <n>.
This is 0 for integers which are not squarefree, i.e.,
which are divided by a square $r^2$.  Otherwise it is 1 if <n> has a even
number and $-1$ if <n> has an odd number of prime factors.

The importance of $\mu$ stems  from  the  so  called  inversion  formula.
Suppose $f(<n>)$ is a multiplicative arithmetic function defined  on  the
positive  integers  and  let  $g(<n>)=\sum_{d  \mid   <n>}{f(d)}$.   Then
$f(<n>)=\sum_{d \mid <n>}{\mu(d) g(<n>/d)}$. As a special  case  we  have
$\phi(<n>) = \sum_{d \mid <n>}{\mu(d) <n>/d}$ since 
$<n> = \sum_{d \mid <n>}{\phi(d)}$ (see~"Phi").

`MoebiusMu' usually   spends  all of   its    time   factoring <n>   (see
"FactorsInt").



\beginexample
gap> MoebiusMu( 60 );  MoebiusMu( 61 );  MoebiusMu( 62 );
0
-1
1
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Continued Fractions}

\>ContinuedFractionExpansionOfRoot( <P>, <n> ) F

The first <n> terms of the continued fraction expansion of the only
positive real root of the polynomial <P> with integer coefficients.
The leading coefficient of <P> must be positive and the value of <P> at 0
must be negative. If the degree of <P> is 2 and <n> = 0, the function
computes one period of the continued fraction expansion of the root in
question. Anything may happen if <P> has three or more positive real
roots.



\beginexample
gap> x := Indeterminate(Integers);;
gap> ContinuedFractionExpansionOfRoot(x^2-7,20);
[ 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1 ]
gap> ContinuedFractionExpansionOfRoot(x^2-7,0);
[ 2, 1, 1, 1, 4 ]
gap> ContinuedFractionExpansionOfRoot(x^3-2,20);
[ 1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3 ]
gap> ContinuedFractionExpansionOfRoot(x^5-x-1,50);
[ 1, 5, 1, 42, 1, 3, 24, 2, 2, 1, 16, 1, 11, 1, 1, 2, 31, 1, 12, 5, 1, 7, 11, 
  1, 4, 1, 4, 2, 2, 3, 4, 2, 1, 1, 11, 1, 41, 12, 1, 8, 1, 1, 1, 1, 1, 9, 2, 
  1, 5, 4 ]
\endexample

\>ContinuedFractionApproximationOfRoot( <P>, <n> ) F

The <n>th continued fraction approximation of the only positive real root
of the polynomial <P> with integer coefficients. The leading coefficient
of <P> must be positive and the value of <P> at 0 must be negative.
Anything may happen if <P> has three or more positive real roots.



\beginexample
gap> ContinuedFractionApproximationOfRoot(x^2-2,10);
3363/2378
gap> 3363^2-2*2378^2;
1
gap> z := ContinuedFractionApproximationOfRoot(x^5-x-1,20);
499898783527/428250732317
gap> z^5-z-1;
486192462527432755459620441970617283/
14404247382319842421697357558805709031116987826242631261357
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Miscellaneous}

\>TwoSquares( <n> ) F

`TwoSquares' returns a list of two integers $x\le y$ such that the sum of
the squares of $x$ and $y$ is equal to the nonnegative integer <n>, i.e.,
$n = x^2+y^2$.  If no such representation exists `TwoSquares' will return
`fail'.   `TwoSquares' will return a representation for which the  gcd of
$x$  and   $y$ is  as  small  as  possible.    It is not  specified which
representation `TwoSquares' returns, if there is more than one.

Let $a$ be the product of all maximal powers of primes of the form $4k+3$
dividing <n>.  A representation of <n> as a sum of two squares  exists if
and only if $a$ is a perfect square.  Let $b$ be the maximal power of $2$
dividing <n> or its half, whichever is a perfect square. Then the minimal
possible gcd of $x$ and $y$ is the square root $c$ of $a b$.  The  number
of different minimal representation with $x\le y$ is $2^{l-1}$, where $l$
is the number of different prime factors of the form $4k+1$ of <n>.

The algorithm first finds a square root $r$ of $-1$ modulo $<n> / (a b)$,
which must exist, and applies the Euclidean algorithm to $r$ and <n>. The
first residues in the sequence that are  smaller than  $\sqrt{<n>/(a b)}$
times $c$ are a possible pair $x$ and $y$.

Better descriptions of the algorithm and related topics can be found  in
\cite{Wagon90} and \cite{Zagier90}.


\index{representation!as a sum of two squares}

\beginexample
gap> TwoSquares( 5 );
[ 1, 2 ]
gap> TwoSquares( 11 );  # there is no representation
fail
gap> TwoSquares( 16 );
[ 0, 4 ]
gap> TwoSquares( 45 );  # 3 is the minimal possible gcd because 9 divides 45
[ 3, 6 ]
gap> TwoSquares( 125 );  # it is not [5,10] because their gcd is not minimal
[ 2, 11 ]
gap> TwoSquares( 13*17 );  # [10,11] would be the other possible representation
[ 5, 14 ]
gap> TwoSquares( 848654483879497562821 );  # 848654483879497562821 is prime
#I  IsPrimeInt: probably prime, but not proven: 848654483879497562821
#I  FactorsInt: used the following factor(s) which are probably primes:
#I        848654483879497562821
[ 6305894639, 28440994650 ]
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%                  
%E  numtheor.msk  . . . . . . . . . . . . . . . . . . . . . . . ends here