1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
|
% This file was created automatically from numtheor.msk.
% DO NOT EDIT!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A numtheor.msk GAP documentation Martin Schoenert
%A Alexander Hulpke
%%
%A @(#)$Id: numtheor.msk,v 1.17.2.2 2005/05/10 08:55:31 gap Exp $
%%
%Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
%Y Copyright (C) 2002 The GAP Group
%%
\Chapter{Number Theory}
\index{prime residue group}
{\GAP} provides a couple of elementary number theoretic functions.
Most of these deal with the group of integers coprime to $m$,
called the *prime residue group*.
$\phi(m)$ (see~"Phi") is the order of this group,
$\lambda(m)$ (see~"Lambda") the exponent.
If and only if $m$ is 2, 4, an odd prime power $p^e$,
or twice an odd prime power $2 p^e$, this group is cyclic.
In this case the generators of the group, i.e., elements of order
$\phi(m)$, are called *primitive roots* (see~"PrimitiveRootMod",
"IsPrimitiveRootMod").
Note that neither the arguments nor the return values of the functions
listed below are groups or group elements in the sense of {\GAP}.
The arguments are simply integers.
\>`InfoNumtheor' V
`InfoNumtheor' is the info class (see~"Info Functions") for the
functions in the number theory chapter.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Prime Residues}
\>PrimeResidues( <m> )!{function} F
`PrimeResidues' returns the set of integers from the range `0..Abs(<m>)-1'
that are coprime to the integer <m>.
`Abs(<m>)' must be less than $2^{28}$, otherwise the set would probably be
too large anyhow.
\index{prime residue group}
\beginexample
gap> PrimeResidues( 0 ); PrimeResidues( 1 ); PrimeResidues( 20 );
[ ]
[ 0 ]
[ 1, 3, 7, 9, 11, 13, 17, 19 ]
\endexample
\>Phi( <m> ) O
`Phi' returns the number $\phi(<m>)$ of positive integers less than the
positive integer <m> that are coprime to <m>.
Suppose that $m = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$. Then $\phi(m)$
is $p_1^{e_1-1} (p_1-1) p_2^{e_2-1} (p_2-1) \cdots p_k^{e_k-1} (p_k-1)$.
\index{order!of the prime residue group}
\index{prime residue group!order}
\atindex{Euler's totient function}{@Euler's totient function}
\beginexample
gap> Phi( 12 );
4
gap> Phi( 2^13-1 ); # this proves that 2^(13)-1 is a prime
8190
gap> Phi( 2^15-1 );
27000
\endexample
\>Lambda( <m> ) O
`Lambda' returns the exponent $\lambda(<m>)$ of the group of prime
residues modulo the integer <m>.
$\lambda(<m>)$ is the smallest positive integer $l$ such that for every
$a$ relatively prime to <m> we have $a^l \equiv 1 \pmod{<m>}$.
Fermat's theorem asserts $a^{\phi(<m>)} \equiv 1 \pmod{<m>}$;
thus $\lambda(m)$ divides $\phi(m)$ (see~"Phi").
Carmichael's theorem states that $\lambda$ can be computed as follows:
$\lambda(2) = 1$, $\lambda(4) = 2$ and $\lambda(2^e) = 2^{e-2}$
if $3 \le e$,
$\lambda(p^e) = (p-1) p^{e-1}$ (i.e. $\phi(m)$) if $p$ is an odd prime
and
$\lambda(n*m) = `Lcm'( \lambda(n), \lambda(m) )$ if $n, m$ are coprime.
Composites for which $\lambda(m)$ divides $m - 1$ are called Carmichaels.
If $6k+1$, $12k+1$ and $18k+1$ are primes their product is such a number.
There are only 1547 Carmichaels below $10^{10}$ but 455052511 primes.
\atindex{Carmichael's lambda function}{@Carmichael's lambda function}
\index{prime residue group!exponent}
\index{exponent!of the prime residue group}
\beginexample
gap> Lambda( 10 );
4
gap> Lambda( 30 );
4
gap> Lambda( 561 ); # 561 is the smallest Carmichael number
80
\endexample
\>GeneratorsPrimeResidues( <n> ) F
Let <n> be a positive integer.
`GeneratorsPrimeResidues' returns a description of generators of the
group of prime residues modulo <n>.
The return value is a record with components
\beginitems
`primes': &
a list of the prime factors of <n>,
`exponents': &
a list of the exponents of these primes in the factorization of <n>,
and
`generators': &
a list describing generators of the group of prime residues;
for the prime factor $2$, either a primitive root or a list of two
generators is stored,
for each other prime factor of <n>, a primitive root is stored.
\enditems
\beginexample
gap> GeneratorsPrimeResidues( 1 );
rec( primes := [ ], exponents := [ ], generators := [ ] )
gap> GeneratorsPrimeResidues( 4*3 );
rec( primes := [ 2, 3 ], exponents := [ 2, 1 ], generators := [ 7, 5 ] )
gap> GeneratorsPrimeResidues( 8*9*5 );
rec( primes := [ 2, 3, 5 ], exponents := [ 3, 2, 1 ],
generators := [ [ 271, 181 ], 281, 217 ] )
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Primitive Roots and Discrete Logarithms}
\>OrderMod( <n>, <m> ) F
`OrderMod' returns the multiplicative order of the integer <n> modulo the
positive integer <m>.
If <n> and <m> are not coprime the order of <n> is not defined
and `OrderMod' will return 0.
If <n> and <m> are relatively prime the multiplicative order of <n>
modulo <m> is the smallest positive integer $i$ such that
$<n>^i \equiv 1 \pmod{<m>}$.
If the group of prime residues modulo <m> is cyclic then each element
of maximal order is called a primitive root modulo <m>
(see~"IsPrimitiveRootMod").
`OrderMod' usually spends most of its time factoring <m> and $\phi(<m>)$
(see~"FactorsInt").
\index{multiplicative order of an integer}
\beginexample
gap> OrderMod( 2, 7 );
3
gap> OrderMod( 3, 7 ); # 3 is a primitive root modulo 7
6
\endexample
\>LogMod( <n>, <r>, <m> ) F
\>LogModShanks( <n>, <r>, <m> ) F
computes the discrete <r>-logarithm of the integer <n> modulo the integer
<m>.
It returns a number <l> such that $<r>^{<l>}\equiv <n>\pmod{<m>}$
if such a number exists.
Otherwise `fail' is returned.
`LogModShanks' uses the Baby Step - Giant Step Method of Shanks (see for
example section 5.4.1 in \cite{Coh93} and in general
requires more memory than a call to `LogMod'.
\index{logarithm!discrete}
\beginexample
gap> l:= LogMod( 2, 5, 7 ); 5^l mod 7 = 2;
4
true
gap> LogMod( 1, 3, 3 ); LogMod( 2, 3, 3 );
0
fail
\endexample
\>PrimitiveRootMod( <m>[, <start>] ) F
`PrimitiveRootMod' returns the smallest primitive root modulo the
positive integer <m> and `fail' if no such primitive root exists.
If the optional second integer argument <start> is given
`PrimitiveRootMod' returns the smallest primitive root that is strictly
larger than <start>.
\index{primitive root modulo an integer}
\index{prime residue group!generator}
\index{generator!of the prime residue group}
\beginexample
gap> PrimitiveRootMod( 409 ); # largest primitive root for a prime less than 2000
21
gap> PrimitiveRootMod( 541, 2 );
10
gap> PrimitiveRootMod( 337, 327 ); # 327 is the largest primitive root mod 337
fail
gap> PrimitiveRootMod( 30 ); # there exists no primitive root modulo 30
fail
\endexample
\>IsPrimitiveRootMod( <r>, <m> ) F
`IsPrimitiveRootMod' returns `true' if the integer <r> is a primitive
root modulo the positive integer <m> and `false' otherwise. If <r> is
less than 0 or larger than <m> it is replaced by its remainder.
\index{test!for a primitive root}
\index{prime residue group!generator}
\index{generator!of the prime residue group}
\beginexample
gap> IsPrimitiveRootMod( 2, 541 );
true
gap> IsPrimitiveRootMod( -539, 541 ); # same computation as above;
true
gap> IsPrimitiveRootMod( 4, 541 );
false
gap> ForAny( [1..29], r -> IsPrimitiveRootMod( r, 30 ) );
false
gap> # there is no a primitive root modulo 30
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Roots Modulo Integers}
\>Jacobi( <n>, <m> ) F
`Jacobi' returns the value of the *Jacobi symbol* of the integer <n>
modulo the integer <m>.
Suppose that $<m> = p_1 p_2 \cdots p_k$ is a product of primes, not
necessarily distinct. Then for <n> coprime to <m> the Jacobi symbol is
defined by $J(<n>/<m>) = L(<n>/p_1) L(<n>/p_2) \cdots L(<n>/p_k)$, where
$L(<n>/p)$ is the Legendre symbol (see~"Legendre"). By convention
$J(<n>/1) = 1$. If the gcd of <n> and <m> is larger than 1 we define
$J(<n>/<m>) = 0$.
If <n> is a *quadratic residue* modulo <m>, i.e., if there exists an $r$
such that $r^2 \equiv <n> \pmod{<m>}$ then $J(<n>/<m>) = 1$. However,
$J(<n>/<m>) = 1$ implies the existence of such an $r$ only if <m> is a
prime.
`Jacobi' is very efficient, even for large values of <n> and <m>, it is
about as fast as the Euclidean algorithm (see~"Gcd").
\index{quadratic residue}
\index{residue!quadratic}
\beginexample
gap> Jacobi( 11, 35 ); # 9^2 = 11 mod 35
1
gap> Jacobi( 6, 35 ); # it is -1, thus there is no r such that r^2 = 6 mod 35
-1
gap> Jacobi( 3, 35 ); # it is 1 even though there is no r with r^2 = 3 mod 35
1
\endexample
\>Legendre( <n>, <m> ) F
`Legendre' returns the value of the *Legendre symbol* of the integer <n>
modulo the positive integer <m>.
The value of the Legendre symbol $L(<n>/<m>)$ is 1 if <n> is a
*quadratic residue* modulo <m>, i.e., if there exists an integer $r$ such
that $r^2 \equiv n \pmod{<m>}$ and $-1$ otherwise.
If a root of <n> exists it can be found by `RootMod' (see "RootMod").
While the value of the Legendre symbol usually is only defined for <m> a
prime, we have extended the definition to include composite moduli too.
The Jacobi symbol (see "Jacobi") is another generalization of the
Legendre symbol for composite moduli that is much cheaper to compute,
because it does not need the factorization of <m> (see "FactorsInt").
A description of the Jacobi symbol, the Legendre symbol, and related
topics can be found in \cite{Baker84}.
\index{quadratic residue}
\index{residue!quadratic}
\beginexample
gap> Legendre( 5, 11 ); # 4^2 = 5 mod 11
1
gap> Legendre( 6, 11 ); # it is -1, thus there is no r such that r^2 = 6 mod 11
-1
gap> Legendre( 3, 35 ); # it is -1, thus there is no r such that r^2 = 3 mod 35
-1
\endexample
\>RootMod( <n>[, <k>], <m> ) F
`RootMod' computes a <k>th root of the integer <n> modulo the positive
integer <m>, i.e., a $r$ such that $r^{<k>} \equiv <n> \pmod{<m>}$.
If no such root exists `RootMod' returns `fail'.
If only the arguments <n> and <m> are given,
the default value for <k> is $2$.
In the current implementation <k> must be a prime.
A square root of <n> exists only if `Legendre(<n>,<m>) = 1'
(see~"Legendre").
If <m> has $r$ different prime factors then there are $2^r$ different
roots of <n> mod <m>. It is unspecified which one `RootMod' returns.
You can, however, use `RootsMod' (see~"RootsMod") to compute the full set
of roots.
`RootMod' is efficient even for large values of <m>, in fact the most
time is usually spent factoring <m> (see "FactorsInt").
\index{quadratic residue}
\index{residue!quadratic}
\index{root!of an integer modulo another}
\beginexample
gap> RootMod( 64, 1009 ); # note 'RootMod' does not return 8 in this case but -8;
1001
gap> RootMod( 64, 3, 1009 );
518
gap> RootMod( 64, 5, 1009 );
656
gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
> x -> x mod 1009 ); # set of all square roots of 64 mod 1009
[ 1001, 8 ]
\endexample
\>RootsMod( <n>[, <k>], <m> ) F
`RootsMod' computes the set of <k>th roots of the integer <n>
modulo the positive integer <m>, i.e., a $r$ such that
$r^{<k>} \equiv <n> \pmod{<m>}$.
If only the arguments <n> and <m> are given,
the default value for <k> is $2$.
In the current implementation <k> must be a prime.
\beginexample
gap> RootsMod( 1, 7*31 ); # the same as `RootsUnityMod( 7*31 )'
[ 1, 92, 125, 216 ]
gap> RootsMod( 7, 7*31 );
[ 21, 196 ]
gap> RootsMod( 5, 7*31 );
[ ]
gap> RootsMod( 1, 5, 7*31 );
[ 1, 8, 64, 78, 190 ]
\endexample
\>RootsUnityMod( [<k>, ] <m> ) F
`RootsUnityMod' returns the set of <k>-th roots of unity modulo the
positive integer <m>, i.e.,
the list of all solutions $r$ of $r^{<k>} \equiv <n> \pmod{<m>}$.
If only the argument <m> is given, the default value for <k> is $2$.
In general there are $<k>^n$ such roots if the modulus <m> has $n$
different prime factors $p$ such that $p \equiv 1 \pmod{<k>}$. If $<k>^2$
divides <m> then there are $<k>^{n+1}$ such roots; and especially if
$<k> = 2$ and 8 divides <m> there are $2^{n+2}$ such roots.
In the current implementation <k> must be a prime.
\index{modular roots}
\index{root!of 1 modulo an integer}
\beginexample
gap> RootsUnityMod( 7*31 ); RootsUnityMod( 3, 7*31 );
[ 1, 92, 125, 216 ]
[ 1, 25, 32, 36, 67, 149, 156, 191, 211 ]
gap> RootsUnityMod( 5, 7*31 );
[ 1, 8, 64, 78, 190 ]
gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
> x -> x mod 1009 ); # set of all square roots of 64 mod 1009
[ 1001, 8 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Multiplicative Arithmetic Functions}
\>Sigma( <n> ) O
`Sigma' returns the sum of the positive divisors of the nonzero integer
<n>.
`Sigma' is a multiplicative arithmetic function, i.e., if <n> and $m$ are
relatively prime we have $\sigma(<n> m) = \sigma(<n>) \sigma(m)$.
Together with the formula $\sigma(p^e) = (p^{e+1}-1) / (p-1)$ this allows
us to compute $\sigma(<n>)$.
Integers <n> for which $\sigma(<n>)=2 <n>$ are called perfect. Even
perfect integers are exactly of the form $2^{<n>-1}(2^{<n>}-1)$ where
$2^{<n>}-1$ is prime. Primes of the form $2^{<n>}-1$ are called *Mersenne
primes*, the known ones are obtained for <n> $=$ 2, 3, 5, 7, 13, 17, 19,
31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689,
9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091,
756839, and 859433. It is not known whether odd perfect integers exist,
however~\cite{BC89} show that any such integer must have at least 300
decimal digits.
`Sigma' usually spends most of its time factoring <n> (see~"FactorsInt").
\beginexample
gap> Sigma( 1 );
1
gap> Sigma( 1009 ); # 1009 is a prime
1010
gap> Sigma( 8128 ) = 2*8128; # 8128 is a perfect number
true
\endexample
\>Tau( <n> ) O
`Tau' returns the number of the positive divisors of the nonzero integer
<n>.
`Tau' is a multiplicative arithmetic function, i.e., if <n> and $m$ are
relative prime we have $\tau(<n> m) = \tau(<n>) \tau(m)$.
Together with the formula $\tau(p^e) = e+1$ this allows us to compute
$\tau(<n>)$.
`Tau' usually spends most of its time factoring <n> (see~"FactorsInt").
\beginexample
gap> Tau( 1 );
1
gap> Tau( 1013 ); # thus 1013 is a prime
2
gap> Tau( 8128 );
14
gap> Tau( 36 ); # the result is odd if and only if the argument is a perfect square
9
\endexample
\>MoebiusMu( <n> ) F
`MoebiusMu' computes the value of Moebius inversion function for the
nonzero integer <n>.
This is 0 for integers which are not squarefree, i.e.,
which are divided by a square $r^2$. Otherwise it is 1 if <n> has a even
number and $-1$ if <n> has an odd number of prime factors.
The importance of $\mu$ stems from the so called inversion formula.
Suppose $f(<n>)$ is a multiplicative arithmetic function defined on the
positive integers and let $g(<n>)=\sum_{d \mid <n>}{f(d)}$. Then
$f(<n>)=\sum_{d \mid <n>}{\mu(d) g(<n>/d)}$. As a special case we have
$\phi(<n>) = \sum_{d \mid <n>}{\mu(d) <n>/d}$ since
$<n> = \sum_{d \mid <n>}{\phi(d)}$ (see~"Phi").
`MoebiusMu' usually spends all of its time factoring <n> (see
"FactorsInt").
\beginexample
gap> MoebiusMu( 60 ); MoebiusMu( 61 ); MoebiusMu( 62 );
0
-1
1
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Continued Fractions}
\>ContinuedFractionExpansionOfRoot( <P>, <n> ) F
The first <n> terms of the continued fraction expansion of the only
positive real root of the polynomial <P> with integer coefficients.
The leading coefficient of <P> must be positive and the value of <P> at 0
must be negative. If the degree of <P> is 2 and <n> = 0, the function
computes one period of the continued fraction expansion of the root in
question. Anything may happen if <P> has three or more positive real
roots.
\beginexample
gap> x := Indeterminate(Integers);;
gap> ContinuedFractionExpansionOfRoot(x^2-7,20);
[ 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1 ]
gap> ContinuedFractionExpansionOfRoot(x^2-7,0);
[ 2, 1, 1, 1, 4 ]
gap> ContinuedFractionExpansionOfRoot(x^3-2,20);
[ 1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3 ]
gap> ContinuedFractionExpansionOfRoot(x^5-x-1,50);
[ 1, 5, 1, 42, 1, 3, 24, 2, 2, 1, 16, 1, 11, 1, 1, 2, 31, 1, 12, 5, 1, 7, 11,
1, 4, 1, 4, 2, 2, 3, 4, 2, 1, 1, 11, 1, 41, 12, 1, 8, 1, 1, 1, 1, 1, 9, 2,
1, 5, 4 ]
\endexample
\>ContinuedFractionApproximationOfRoot( <P>, <n> ) F
The <n>th continued fraction approximation of the only positive real root
of the polynomial <P> with integer coefficients. The leading coefficient
of <P> must be positive and the value of <P> at 0 must be negative.
Anything may happen if <P> has three or more positive real roots.
\beginexample
gap> ContinuedFractionApproximationOfRoot(x^2-2,10);
3363/2378
gap> 3363^2-2*2378^2;
1
gap> z := ContinuedFractionApproximationOfRoot(x^5-x-1,20);
499898783527/428250732317
gap> z^5-z-1;
486192462527432755459620441970617283/
14404247382319842421697357558805709031116987826242631261357
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Miscellaneous}
\>TwoSquares( <n> ) F
`TwoSquares' returns a list of two integers $x\le y$ such that the sum of
the squares of $x$ and $y$ is equal to the nonnegative integer <n>, i.e.,
$n = x^2+y^2$. If no such representation exists `TwoSquares' will return
`fail'. `TwoSquares' will return a representation for which the gcd of
$x$ and $y$ is as small as possible. It is not specified which
representation `TwoSquares' returns, if there is more than one.
Let $a$ be the product of all maximal powers of primes of the form $4k+3$
dividing <n>. A representation of <n> as a sum of two squares exists if
and only if $a$ is a perfect square. Let $b$ be the maximal power of $2$
dividing <n> or its half, whichever is a perfect square. Then the minimal
possible gcd of $x$ and $y$ is the square root $c$ of $a b$. The number
of different minimal representation with $x\le y$ is $2^{l-1}$, where $l$
is the number of different prime factors of the form $4k+1$ of <n>.
The algorithm first finds a square root $r$ of $-1$ modulo $<n> / (a b)$,
which must exist, and applies the Euclidean algorithm to $r$ and <n>. The
first residues in the sequence that are smaller than $\sqrt{<n>/(a b)}$
times $c$ are a possible pair $x$ and $y$.
Better descriptions of the algorithm and related topics can be found in
\cite{Wagon90} and \cite{Zagier90}.
\index{representation!as a sum of two squares}
\beginexample
gap> TwoSquares( 5 );
[ 1, 2 ]
gap> TwoSquares( 11 ); # there is no representation
fail
gap> TwoSquares( 16 );
[ 0, 4 ]
gap> TwoSquares( 45 ); # 3 is the minimal possible gcd because 9 divides 45
[ 3, 6 ]
gap> TwoSquares( 125 ); # it is not [5,10] because their gcd is not minimal
[ 2, 11 ]
gap> TwoSquares( 13*17 ); # [10,11] would be the other possible representation
[ 5, 14 ]
gap> TwoSquares( 848654483879497562821 ); # 848654483879497562821 is prime
#I IsPrimeInt: probably prime, but not proven: 848654483879497562821
#I FactorsInt: used the following factor(s) which are probably primes:
#I 848654483879497562821
[ 6305894639, 28440994650 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E numtheor.msk . . . . . . . . . . . . . . . . . . . . . . . ends here
|