1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
#############################################################################
##
#W classic.gd GAP Library Frank Celler
##
#H @(#)$Id: classic.gd,v 4.16 2002/09/05 14:40:23 gap Exp $
##
#Y Copyright (C) 1996, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
##
## This file contains the operations for the construction of the classical
## group types.
##
Revision.classic_gd :=
"@(#)$Id: classic.gd,v 4.16 2002/09/05 14:40:23 gap Exp $";
#############################################################################
#1
## The following functions return classical groups.
## For the linear, symplectic, and unitary groups (the latter in dimension
## at least $3$), the generators are taken from~\cite{Tay87};
## for the unitary groups in dimension 2, the isomorphism of $SU(2,q)$ and
## $SL(2,q)$ is used, see for example~\cite{Hup67}.
## The generators of the orthogonal groups are taken
## from~\cite{IshibashiEarnest94} and~\cite{KleidmanLiebeck90},
## except that the generators of the orthogonal groups in odd dimension in
## even characteristic are constructed via the isomorphism to a symplectic
## group, see for example~\cite{Car72a}.
##
## For symplectic and orthogonal matrix groups returned by the functions
## described below, the invariant bilinear form is stored as the value of
## the attribute `InvariantBilinearForm' (see~"InvariantBilinearForm").
## Analogously, the invariant sesquilinear form defining the unitary groups
## is stored as the value of the attribute `InvariantSesquilinearForm'
## (see~"InvariantSesquilinearForm").
## The defining quadratic form of orthogonal groups is stored as the value
## of the attribute `InvariantQuadraticForm' (see~"InvariantQuadraticForm").
##
#############################################################################
##
#O GeneralLinearGroupCons( <filter>, <d>, <R> )
##
DeclareConstructor( "GeneralLinearGroupCons", [ IsGroup, IsInt, IsRing ] );
#############################################################################
##
#F GeneralLinearGroup( [<filt>, ]<d>, <R> ) . . . . . general linear group
#F GL( [<filt>, ]<d>, <R> )
#F GeneralLinearGroup( [<filt>, ]<d>, <q> )
#F GL( [<filt>, ]<d>, <q> )
##
## The first two forms construct a group isomorphic to the general linear
## group GL( <d>, <R> ) of all $<d> \times <d>$ matrices that are invertible
## over the ring <R>, in the category given by the filter <filt>.
##
## The third and the fourth form construct the general linear group over the
## finite field with <q> elements.
##
## If <filt> is not given it defaults to `IsMatrixGroup',
## and the returned group is the general linear group as a matrix group in
## its natural action (see also~"IsNaturalGL", "IsNaturalGLnZ").
##
## Currently supported rings <R> are finite fields, the ring `Integers',
## and residue class rings `Integers mod <m>'.
##
BindGlobal( "GeneralLinearGroup", function ( arg )
if Length( arg ) = 2 then
if IsRing( arg[2] ) then
return GeneralLinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsPrimePowerInt( arg[2] ) then
return GeneralLinearGroupCons( IsMatrixGroup, arg[1], GF( arg[2] ) );
fi;
elif Length( arg ) = 3 and IsOperation( arg[1] ) then
if IsRing( arg[2] ) then
return GeneralLinearGroupCons( arg[1], arg[2], arg[3] );
elif IsPrimePowerInt( arg[3] ) then
return GeneralLinearGroupCons( arg[1], arg[2], GF( arg[3] ) );
fi;
fi;
Error( "usage: GeneralLinearGroup( [<filter>, ]<d>, <R> )" );
end );
DeclareSynonym( "GL", GeneralLinearGroup );
#############################################################################
##
#O GeneralOrthogonalGroupCons( <filter>, <e>, <d>, <q> )
##
DeclareConstructor( "GeneralOrthogonalGroupCons",
[ IsGroup, IsInt, IsPosInt, IsPosInt ] );
#############################################################################
##
#F GeneralOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q> ) . gen. orthog. group
#F GO( [<filt>, ][<e>, ]<d>, <q> )
##
## constructs a group isomorphic to the
## general orthogonal group GO( <e>, <d>, <q> ) of those $<d> \times <d>$
## matrices over the field with <q> elements that respect a non-singular
## quadratic form (see~"InvariantQuadraticForm") specified by <e>,
## in the category given by the filter <filt>.
##
## The value of <e> must be $0$ for odd <d> (and can optionally be
## omitted in this case), respectively one of $1$ or $-1$ for even <d>.
## If <filt> is not given it defaults to `IsMatrixGroup',
## and the returned group is the general orthogonal group itself.
##
## Note that in~\cite{KleidmanLiebeck90}, GO is defined as the stabilizer
## $\Delta(V,F,\kappa)$ of the quadratic form, up to scalars,
## whereas our GO is called $I(V,F,\kappa)$ there.
##
BindGlobal( "GeneralOrthogonalGroup", function ( arg )
if Length( arg ) = 2 then
return GeneralOrthogonalGroupCons( IsMatrixGroup, 0, arg[1], arg[2] );
elif Length( arg ) = 3 and ForAll( arg, IsInt ) then
return GeneralOrthogonalGroupCons( IsMatrixGroup,arg[1],arg[2],arg[3] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return GeneralOrthogonalGroupCons( arg[1], 0, arg[2], arg[3] );
elif Length( arg ) = 4 then
return GeneralOrthogonalGroupCons( arg[1], arg[2], arg[3], arg[4] );
fi;
fi;
Error( "usage: GeneralOrthogonalGroup( [<filter>, ][<e>, ]<d>, <q> )" );
end );
DeclareSynonym( "GO", GeneralOrthogonalGroup );
#############################################################################
##
#O GeneralUnitaryGroupCons( <filter>, <d>, <q> )
##
DeclareConstructor( "GeneralUnitaryGroupCons",
[ IsGroup, IsPosInt, IsPosInt ] );
#############################################################################
##
#F GeneralUnitaryGroup( [<filt>, ]<d>, <q> ) . . . . . general unitary group
#F GU( [<filt>, ]<d>, <q> )
##
## constructs a group isomorphic to the general unitary group GU( <d>, <q> )
## of those $<d> \times <d>$ matrices over the field with $<q>^2$ elements
## that respect a fixed nondegenerate sesquilinear form,
## in the category given by the filter <filt>.
##
## If <filt> is not given it defaults to `IsMatrixGroup',
## and the returned group is the general unitary group itself.
##
BindGlobal( "GeneralUnitaryGroup", function ( arg )
if Length( arg ) = 2 then
return GeneralUnitaryGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return GeneralUnitaryGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: GeneralUnitaryGroup( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym( "GU", GeneralUnitaryGroup );
#############################################################################
##
#O SpecialLinearGroupCons( <filter>, <d>, <R> )
##
DeclareConstructor( "SpecialLinearGroupCons", [ IsGroup, IsInt, IsRing ] );
#############################################################################
##
#F SpecialLinearGroup( [<filt>, ]<d>, <R> ) . . . . . special linear group
#F SL( [<filt>, ]<d>, <R> )
#F SpecialLinearGroup( [<filt>, ]<d>, <q> )
#F SL( [<filt>, ]<d>, <q> )
##
## The first two forms construct a group isomorphic to the special linear
## group SL( <d>, <R> ) of all those $<d> \times <d>$ matrices over the
## ring <R> whose determinant is the identity of <R>,
## in the category given by the filter <filt>.
##
## The third and the fourth form construct the special linear group over the
## finite field with <q> elements.
##
## If <filt> is not given it defaults to `IsMatrixGroup',
## and the returned group is the special linear group as a matrix group in
## its natural action (see also~"IsNaturalSL", "IsNaturalSLnZ").
##
## Currently supported rings <R> are finite fields, the ring `Integers',
## and residue class rings `Integers mod <m>'.
##
BindGlobal( "SpecialLinearGroup", function ( arg )
if Length( arg ) = 2 then
if IsRing( arg[2] ) then
return SpecialLinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsPrimePowerInt( arg[2] ) then
return SpecialLinearGroupCons( IsMatrixGroup, arg[1], GF( arg[2] ) );
fi;
elif Length( arg ) = 3 and IsOperation( arg[1] ) then
if IsRing( arg[2] ) then
return SpecialLinearGroupCons( arg[1], arg[2], arg[3] );
elif IsPrimePowerInt( arg[3] ) then
return SpecialLinearGroupCons( arg[1], arg[2], GF( arg[3] ) );
fi;
fi;
Error( "usage: SpecialLinearGroup( [<filter>, ]<d>, <R> )" );
end );
DeclareSynonym( "SL", SpecialLinearGroup );
#############################################################################
##
#O SpecialOrthogonalGroupCons( <filter>, <e>, <d>, <q> )
##
DeclareConstructor( "SpecialOrthogonalGroupCons",
[ IsGroup, IsInt, IsPosInt, IsPosInt ] );
#############################################################################
##
#F SpecialOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q> ) . spec. orthog. group
#F SO( [<filt>, ][<e>, ]<d>, <q> )
##
## `SpecialOrthogonalGroup' returns a group isomorphic to the
## special orthogonal group SO( <e>, <d>, <q> ), which is the subgroup of
## all those matrices in the general orthogonal group
## (see~"GeneralOrthogonalGroup") that have determinant one,
## in the category given by the filter <filt>.
## (The index of SO( <e>, <d>, <q> ) in GO( <e>, <d>, <q> ) is $2$ if <q> is
## odd, and $1$ if <q> is even.)
#T Also interesting is the group Omega( <e>, <d>, <q> ), which is always of
#T index $2$ in SO( <e>, <d>, <q> );
#T this is the subgroup of all matrices with square spinor norm in odd
#T characteristic or Dickson invariant $0$ in even characteristic.
##
## If <filt> is not given it defaults to `IsMatrixGroup',
## and the returned group is the special orthogonal group itself.
##
BindGlobal( "SpecialOrthogonalGroup", function ( arg )
if Length( arg ) = 2 then
return SpecialOrthogonalGroupCons( IsMatrixGroup, 0, arg[1], arg[2] );
elif Length( arg ) = 3 and ForAll( arg, IsInt ) then
return SpecialOrthogonalGroupCons( IsMatrixGroup,arg[1],arg[2],arg[3] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return SpecialOrthogonalGroupCons( arg[1], 0, arg[2], arg[3] );
elif Length( arg ) = 4 then
return SpecialOrthogonalGroupCons( arg[1], arg[2], arg[3], arg[4] );
fi;
fi;
Error( "usage: SpecialOrthogonalGroup( [<filter>, ][<e>, ]<d>, <q> )" );
end );
DeclareSynonym( "SO", SpecialOrthogonalGroup );
#############################################################################
##
#O SpecialUnitaryGroupCons( <filter>, <d>, <q> )
##
DeclareConstructor( "SpecialUnitaryGroupCons",
[ IsGroup, IsPosInt, IsPosInt ] );
#############################################################################
##
#F SpecialUnitaryGroup( [<filt>, ]<d>, <q> ) . . . . . general unitary group
#F SU( [<filt>, ]<d>, <q> )
##
## constructs a group isomorphic to the special unitary group `GU(<d>, <q>)'
## of those $<d> \times <d>$ matrices over the field with $<q>^2$ elements
## whose determinant is the identity of the field and that respect a fixed
## nondegenerate sesquilinear form,
## in the category given by the filter <filt>.
##
## If <filt> is not given it defaults to `IsMatrixGroup',
## and the returned group is the special unitary group itself.
##
BindGlobal( "SpecialUnitaryGroup", function ( arg )
if Length( arg ) = 2 then
return SpecialUnitaryGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return SpecialUnitaryGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: SpecialUnitaryGroup( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym( "SU", SpecialUnitaryGroup );
#############################################################################
##
#O SymplecticGroupCons( <filter>, <d>, <q> )
##
DeclareConstructor( "SymplecticGroupCons", [ IsGroup, IsPosInt, IsPosInt ] );
#############################################################################
##
#F SymplecticGroup( [<filt>, ]<d>, <q> ) . . . . . . . . . symplectic group
#F Sp( [<filt>, ]<d>, <q> )
#F SP( [<filt>, ]<d>, <q> )
##
## constructs a group isomorphic to the symplectic group Sp( <d>, <q> )
## of those $<d> \times <d>$ matrices over the field with <q> elements
## that respect a fixed nondegenerate symplectic form,
## in the category given by the filter <filt>.
##
## If <filt> is not given it defaults to `IsMatrixGroup',
## and the returned group is the symplectic group itself.
##
BindGlobal( "SymplecticGroup", function ( arg )
if Length( arg ) = 2 then
return SymplecticGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return SymplecticGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: SymplecticGroup( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym( "Sp", SymplecticGroup );
DeclareSynonym( "SP", SymplecticGroup );
BindGlobal("DECLARE_PROJECTIVE_GROUPS_OPERATION",
# (<name>,<abbreviation>,<fieldextdeg>,<sizefunc-or-fail>)
function(nam,abbr,extdeg,szf)
local pnam,cons,opr;
opr:=VALUE_GLOBAL(nam);
pnam:=Concatenation("Projective",nam);
cons:=NewConstructor(Concatenation(pnam,"Cons"),[IsGroup,IsInt,IsInt]);
BindGlobal(Concatenation(pnam,"Cons"),cons);
BindGlobal(pnam,function(arg)
if Length(arg) = 2 then
return cons( IsPermGroup, arg[1], arg[2] );
elif IsOperation(arg[1]) then
if Length(arg) = 3 then
return cons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: ",pnam,"( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym(Concatenation("P",abbr),VALUE_GLOBAL(pnam));
# install a method to get the permutation action on lines
InstallMethod( cons,"action on lines",
[ IsPermGroup, IsPosInt,IsPosInt ],
function(fil,n,q)
local g,f,p;
g:=opr(IsMatrixGroup,n,q);
f:=GF(q^extdeg);
p:=ProjectiveActionOnFullSpace(g,f,n);
if szf<>fail then
SetSize(p,szf(n,q,g));
fi;
return p;
end);
end);
#############################################################################
##
#F ProjectiveGeneralLinearGroup( [<filt>, ]<d>, <q> )
#F PGL( [<filt>, ]<d>, <q> )
##
## constructs a group isomorphic to the projective general linear group
## PGL( <d>, <q> ) of those $<d> \times <d>$ matrices over the field with
## <q> elements, modulo the
## centre, in the category given by the filter <filt>.
##
## If <filt> is not given it defaults to `IsPermGroup',
## and the returned group is the action on lines of the underlying vector
## space.
##
#PseudoDeclare("ProjectiveGeneralLinearGroup");
#PseudoDeclare("PGL");
DECLARE_PROJECTIVE_GROUPS_OPERATION("GeneralLinearGroup","GL",1,
# size function
function(n,q,g)
return Size(g)/(q-1);
end);
#############################################################################
##
#F ProjectiveSpecialLinearGroup( [<filt>, ]<d>, <q> )
#F PSL( [<filt>, ]<d>, <q> )
##
## constructs a group isomorphic to the projective special linear group
## PSL( <d>, <q> ) of those $<d> \times <d>$ matrices over the field with
## <q> elements whose determinant is the identity of the field, modulo the
## centre, in the category given by the filter <filt>.
##
## If <filt> is not given it defaults to `IsPermGroup',
## and the returned group is the action on lines of the underlying vector
## space.
##
#PseudoDeclare("ProjectiveSpecialLinearGroup");
#PseudoDeclare("PSL");
DECLARE_PROJECTIVE_GROUPS_OPERATION("SpecialLinearGroup","SL",1,
# size function
function(n,q,g)
return Size(g)/Gcd(n,q-1);
end);
#############################################################################
##
#F ProjectiveGeneralUnitaryGroup( [<filt>, ]<d>, <q> )
#F PGU( [<filt>, ]<d>, <q> )
##
## constructs a group isomorphic to the projective general unitary group
## PGU( <d>, <q> ) of those $<d> \times <d>$ matrices over the field with
## $<q>^2$ elements that respect a fixed nondegenerate sesquilinear form,
## modulo the centre, in the category given by the filter <filt>.
##
## If <filt> is not given it defaults to `IsPermGroup',
## and the returned group is the action on lines of the underlying vector
## space.
##
#PseudoDeclare("ProjectiveGeneralUnitaryGroup");
#PseudoDeclare("PGU");
DECLARE_PROJECTIVE_GROUPS_OPERATION("GeneralUnitaryGroup","GU",2,
# size function
function(n,q,g)
return Size(g)/(q+1);
end);
#############################################################################
##
#F ProjectiveSpecialUnitaryGroup( [<filt>, ]<d>, <q> )
#F PSU( [<filt>, ]<d>, <q> )
##
## constructs a group isomorphic to the projective special unitary group
## PSU( <d>, <q> ) of those $<d> \times <d>$ matrices over the field with
## $<q>^2$ elements that respect a fixed nondegenerate sesquilinear form
## and have determinant 1,
## modulo the centre, in the category given by the filter <filt>.
##
## If <filt> is not given it defaults to `IsPermGroup',
## and the returned group is the action on lines of the underlying vector
## space.
##
#PseudoDeclare("ProjectiveSpecialUnitaryGroup");
#PseudoDeclare("PSU");
DECLARE_PROJECTIVE_GROUPS_OPERATION("SpecialUnitaryGroup","SU",2,
# size function
function(n,q,g)
return Size(g)/Gcd(n,q+1);
end);
#############################################################################
##
#F ProjectiveSymplecticGroup( [<filt>, ]<d>, <q> )
#F PSP( [<filt>, ]<d>, <q> )
#F PSp( [<filt>, ]<d>, <q> )
##
## constructs a group isomorphic to the projective symplectic group
## PSp(<d>,<q>) of those $<d> \times <d>$ matrices over the field with <q>
## elements that respect a fixed nondegenerate symplectic form, modulo the
## centre, in the category given by the filter <filt>.
##
## If <filt> is not given it defaults to `IsPermGroup',
## and the returned group is the action on lines of the underlying vector
## space.
##
#PseudoDeclare("ProjectiveSymplecticGroup");
#PseudoDeclare("PSP");
DECLARE_PROJECTIVE_GROUPS_OPERATION("SymplecticGroup","SP",1,
# size function
function(n,q,g)
return Size(g)/Gcd(2,q-1);
end);
DeclareSynonym( "PSp", PSP );
#############################################################################
##
#E
|