File: clas.gd

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (275 lines) | stat: -rw-r--r-- 11,840 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#############################################################################
##
#W  clas.gd                     GAP library                    Heiko Thei"sen
##
#H  @(#)$Id: clas.gd,v 4.39 2003/04/14 15:49:00 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
Revision.clas_gd :=
    "@(#)$Id: clas.gd,v 4.39 2003/04/14 15:49:00 gap Exp $";

DeclareInfoClass( "InfoClasses" );

#############################################################################
##
#R  IsExternalOrbitByStabilizerRep  . . . . .  external orbit via transversal
##
DeclareRepresentation( "IsExternalOrbitByStabilizerRep",
    IsExternalOrbit, [  ] );


#############################################################################
##
#R  IsConjugacyClassGroupRep( <obj> )
#R  IsConjugacyClassPermGroupRep( <obj> )
##
##  is a representation of conjugacy classes, a subrepresentation for
##  permutation groups is `IsConjugacyClassPermGroupRep'
##
DeclareRepresentation( "IsConjugacyClassGroupRep",
    IsExternalOrbitByStabilizerRep, [  ] );

DeclareRepresentation( "IsConjugacyClassPermGroupRep",
    IsConjugacyClassGroupRep, [  ] );

#############################################################################
##
#O  ConjugacyClass( <G>, <g> )  . . . . . . . . . conjugacy class constructor
##
##  creates the conjugacy class in $G$ with representative $g$.
##  This class is an external set, so functions such as
##  `Representative' (which returns <g>),
##  `ActingDomain' (which returns <G>),
##  `StabilizerOfExternalSet' (which returns the centralizer of <g>)
##  and `AsList' work for it.
##
##  A conjugacy class is an external orbit ("ExternalOrbit") of group
##  elements with the group acting by conjugation on it. Thus element tests
##  or operation representatives can be computed.  The attribute
##  `Centralizer' gives the centralizer of the representative (which is the
##  same result as `StabilizerOfExternalSet'). (This is a slight abuse of
##  notation: This is *not* the centralizer of the class as a *set* which
##  would be the standard behaviour of `Centralizer'.)
##
DeclareOperation( "ConjugacyClass", [ IsGroup, IsObject ] );


#############################################################################
##
#R  IsRationalClassGroupRep . . . . . . . . . . . . . rational class in group
#R  IsRationalClassPermGroupRep . . . . . . . . rational class in perm. group
##
##  is a representation of rational classes, a subrepresentation for
##  permutation groups is `IsRationalClassPermGroupRep'
##
DeclareRepresentation( "IsRationalClassGroupRep",
    IsComponentObjectRep and IsAttributeStoringRep and IsExternalSet,
    [ "galoisGroup", "power" ] );

DeclareRepresentation( "IsRationalClassPermGroupRep",
    IsRationalClassGroupRep,
    [ "galoisGroup", "power" ] );


#############################################################################
##
#M  IsFinite( <cl> )  . . . . . . . . . . . . . . . . .  for a rational class
##
InstallTrueMethod( IsFinite, IsRationalClassGroupRep and IsDomain );
#T The `*' in the `Size' method (file `clas.gi') indicates that infinite
#T rational classes are not allowed.


#############################################################################
##
#O  RationalClass( <G>, <g> ) . . . . . . . . . .  rational class constructor
##
##  creates the rational class in $G$ with representative $g$.
##  A rational class consists of all elements that are conjugate to
##  $g$ or to a power $g^i$ where $i$ is coprime to the order of $g$. Thus a
##  rational class can be interpreted as a conjugacy class of cyclic
##  subgroups.  A rational class is an external set ("IsExternalSet") of
##  group elements with the group acting by conjugation on it, but not an
##  external orbit.
##
DeclareOperation( "RationalClass", [ IsGroup, IsObject ] );


#############################################################################
##
#A  GaloisGroup( <ratcl> )
##
##  Suppose that <ratcl> is a rational class of a group <G> with
##  representative <g>.
##  The exponents $i$  for which $<g>^i$ lies  already in the ordinary
##  conjugacy  class of  <g>, form a  subgroup of the *prime residue class
##  group* $P_n$ (see "PrimitiveRootMod"), the so-called *Galois group*  of
##  the rational class. The prime residue class group $P_n$ is obtained in
##  {\GAP}  as `Units( Integers mod <n> )', the  unit group of a residue
##  class ring. The Galois group of a rational class <rcl> is stored in the
##  attribute `GaloisGroup(<rcl>)' as a subgroup of this group.
DeclareAttribute( "GaloisGroup", IsRationalClassGroupRep );


#############################################################################
##
#F  ConjugacyClassesByRandomSearch( <G> )
##
##  computes the classes of the group <G> by random search.
##  This works very efficiently for almost simple groups.
##
##  This function is also accessible via the option `random' to
##  `ConjugacyClass'.
DeclareGlobalFunction( "ConjugacyClassesByRandomSearch" );

#############################################################################
##
#F  ConjugacyClassesByOrbits( <G> )
##
##  computes the classes of the group <G> as orbits of <G> on its elements.
##  This can be quick but unsurprisingly may also take a lot of memory if
##  <G> becomes larger. All the classes will store their element list and
##  thus a membership test will be quick as well.
##
##  This function is also accessible via the option `action' to
##  `ConjugacyClass'.
DeclareGlobalFunction( "ConjugacyClassesByOrbits" );

# This function computes the classes by orbits if the group is small and the
# `noaction' option is not set, otherwise it returns `fail'.
DeclareGlobalFunction( "ConjugacyClassesForSmallGroup" );

DeclareGlobalFunction( "DecomposedRationalClass" );
DeclareGlobalFunction( "GroupByPrimeResidues" );

DeclareGlobalFunction( "ConjugacyClassesTry" );
DeclareGlobalFunction( "RationalClassesTry" );
DeclareGlobalFunction( "RationalClassesInEANS" );

DeclareGlobalFunction( "SubspaceVectorSpaceGroup" );
DeclareGlobalFunction( "CentralStepConjugatingElement" );
DeclareGlobalFunction( "KernelHcommaC" );
DeclareGlobalFunction( "OrderModK" );
DeclareGlobalFunction( "CentralStepRatClPGroup" );
DeclareGlobalFunction( "CentralStepClEANS" );
DeclareGlobalFunction( "CorrectConjugacyClass" );
DeclareGlobalFunction( "GeneralStepClEANS" );

#############################################################################
##
#F  ClassesSolvableGroup(<G>, <mode> [,<opt>])  . . . . .
##
##  computes conjugacy classes and centralizers in solvable groups. <G> is
##  the acting group. <mode> indicates the type of the calculation:
##
##  0 Conjugacy classes
##
##  4 Conjugacy test for the two elements in <opt>`.candidates'
##
##  In mode 0 the function returns a list of records containing components
##  <representative> and <centralizer>. In mode <4> it returns a
##  conjugating element.
##
##  The optional record <opt> may contain the following components that will
##  affect the algorithms behaviour:
##  
##  \beginitems
##  `pcgs'&is a pcgs that will be used for the calculation.
##  The attribute `EANormalSeriesByPcgs' must return an
##  appropriate series of normal subgroups with elementary abelian factors
##  among them. The algorithm will step down this series.
##  In the case of
##  the calculation of rational classes, it must be a pcgs refining a
##  central series.
##
##  `candidates'&is a list of elements for which canonical representatives
##  are to be computed or for which a conjugacy test is performed. They must
##  be given in mode 4. In mode 0 a list of classes corresponding to
##  <candidates> is returned (which may contain duplicates). The
##  <representative>s chosen are canonical with respect to <pcgs>. The
##  records returned also contain components <operator>
##  such that
##  (<candidate> `^' <operator>) =<representative>.
##
##  `consider'&is a function <consider>(<fhome>,<rep>,<cenp>,<K>,<L>). Here
##  <fhome> is a home pcgs for the factor group <F> in which the calculation
##  currently takes place, <rep> is an element of the factor and <cenp> is a
##  pcgs for the centralizer of <rep> modulo <K>. In mode 0, when lifting
##  from <F>/<K> to <F>/<L> (note: for efficiency reasons, <F> can be
##  different from <G> or <L> might be not trivial) this function is called
##  before performing the actual lifting and only those representatives for
##  which it returns `true' are passed to the next level. This permits for
##  example the calculation of only those classes with small centralizers or
##  classes of restricted orders.
##  \enditems
DeclareGlobalFunction( "ClassesSolvableGroup" );

#############################################################################
##
#F  RationalClassesSolvableGroup(<G>, <mode> [,<opt>])  . . . . .
##
##  computes rational classes and centralizers in solvable groups. <G> is
##  the acting group. <mode> indicates the type of the calculation:
##
##  1 Rational classes of a $p$-group (mode 3 is used internally as well)
##
##  In mode 0 the function returns a list of records containing components
##  <representative> and <centralizer>. In mode 1 the records in addition
##  contain the component <galoisGroup>.
##
##  The optional record <opt> may contain the following components that will
##  affect the algorithms behaviour:
##  
##  \beginitems
##  `pcgs'&is a pcgs that will be used for the calculation. In the case of
##  the calculation of rational classes, it must be a pcgs refining a
##  central series. The attribute `CentralNormalSeriesByPcgs' must return an
##  appropriate series of normal subgroups with elementary abelian factors
##  among them. The algorithm will step down this series.
##
##  `candidates'&is a list of elements for which canonical representatives
##  are to be computed or for which a conjugacy test is performed. They must
##  be given in mode 4. In modes 0 and 1 a list of classes corresponding to
##  <candidates> is returned (which may contain duplicates). The
##  <representative>s chosen are canonical with respect to <pcgs>. The
##  records returned also contain components <operator> and (in mode 1)
##  <exponent> such that
##  (<candidate> `^' <operator>) `^' <exponent>=<representative>.
##
##  %`consider'&is a function <consider>(<rep>,<cen>,<K>,<L>). Here <rep> is
##  %an element of <G> and <cen>/<K> is the centralizer of <rep><K> modulo
##  %<K>. In mode 0 when lifting from <G>/<K> to <G>/<L> this function is
##  %called before performing the actual lifting and only those
##  %representatives for which it returns `true' are passed to the next
##  %level. This permits the calculation of only those classes with say small
##  %centralizers or classes of restricted orders.
##  \enditems
DeclareGlobalFunction( "RationalClassesSolvableGroup" );


#############################################################################
##
#F  CentralizerSizeLimitConsiderFunction(<sz>)
##
##  returns a function  (of the form func(<fhome>,<rep>,<cen>,<K>,<L>)
##  )that can be used in `ClassesSolvableGroup' as the <consider> component
##  of the options record. It will restrict the lifting to those classes,
##  for which the size of the centralizer (in the factor) is at most <sz>.

DeclareGlobalFunction( "CentralizerSizeLimitConsiderFunction" );

DeclareGlobalFunction( "CompleteGaloisGroupPElement" );
DeclareGlobalFunction( "RatClasPElmArrangeClasses" );
DeclareGlobalFunction( "SortRationalClasses" );
DeclareGlobalFunction( "FusionRationalClassesPSubgroup" );
DeclareGlobalFunction( "RationalClassesPElements" );
DeclareGlobalFunction( "RationalClassesPermGroup" );


#############################################################################
##
#E