1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
#############################################################################
##
#W ctblauto.gd GAP library Thomas Breuer
##
#H @(#)$Id: ctblauto.gd,v 4.8.2.1 2005/08/24 14:47:56 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
##
## This file contains the declaration of operations to calculate
## automorphisms of matrices,
#T better in `matrix.gd'?
## e.g., the character matrices of character tables,
## and functions to calculate permutations transforming the rows of a matrix
## to the rows of another matrix.
##
Revision.ctblauto_gd :=
"@(#)$Id: ctblauto.gd,v 4.8.2.1 2005/08/24 14:47:56 gap Exp $";
#############################################################################
##
#F FamiliesOfRows( <mat>, <maps> )
##
## distributes the rows of the matrix <mat> into families as follows.
## Two rows of <mat> belong to the same family if there is a permutation
## of columns that maps one row to the other row.
## Each entry in the list <maps> is regarded to form a family of length 1.
##
## `FamiliesOfRows( <mat>, <maps> )' returns a record with components
## \beginitems
## `famreps' &
## the list of representatives for each family,
##
## `permutations' &
## the list that contains at position `i' a list of permutations
## that map the members of the family with representative `famreps[i]'
## to that representative,
##
## `families' &
## the list that contains at position `i' the list of positions
## of members of the family of representative `famreps[i]';
## (for the element `<maps>[i]' the only member of the family
## will get the number `Length( <mat> ) + i').
## \enditems
##
DeclareGlobalFunction( "FamiliesOfRows" );
#############################################################################
##
#O MatrixAutomorphisms( <mat>[, <maps>, <subgroup>] )
##
## For a matrix <mat>, `MatrixAutomorphisms' returns the group of those
## permutations of the columns of <mat> that leave the set of rows of <mat>
## invariant.
##
## If the arguments <maps> and <subgroup> are given,
## only the group of those permutations is constructed that additionally
## fix each list in the list <maps> under pointwise action `OnTuples',
## and <subgroup> is a permutation group that is known to be a subgroup of
## this group of automorphisms.
##
## Each entry in <maps> must be a list of same length as the rows of <mat>.
## For example, if <mat> is a list of irreducible characters of a group
## then the list of element orders of the conjugacy classes
## (see~"OrdersClassRepresentatives") may be an entry in <maps>.
##
DeclareOperation( "MatrixAutomorphisms", [ IsMatrix ] );
DeclareOperation( "MatrixAutomorphisms", [ IsMatrix, IsList, IsPermGroup ] );
#############################################################################
##
#O TableAutomorphisms( <tbl>, <characters> )
#O TableAutomorphisms( <tbl>, <characters>, \"closed\" )
#O TableAutomorphisms( <tbl>, <characters>, <subgroup> )
##
## `TableAutomorphisms' returns the permutation group of those matrix
## automorphisms (see~"MatrixAutomorphisms") of the list <characters>
## that leave the element orders (see~"OrdersClassRepresentatives")
## and all stored power maps (see~"ComputedPowerMaps") of the character
## table <tbl> invariant.
##
## If <characters> is closed under Galois conjugacy --this is always
## fulfilled for ordinary character tables--
## the string `\"closed\"' may be entered as the third argument.
## Alternatively, a known subgroup <subgroup> of the table automorphisms
## can be entered as the third argument.
##
## The attribute `AutomorphismsOfTable' (see~"AutomorphismsOfTable")
## can be used to compute and store the table automorphisms for the case
## that <characters> equals `Irr( <tbl> )'.
##
DeclareOperation( "TableAutomorphisms",
[ IsNearlyCharacterTable, IsList ] );
DeclareOperation( "TableAutomorphisms",
[ IsNearlyCharacterTable, IsList, IsString ] );
DeclareOperation( "TableAutomorphisms",
[ IsNearlyCharacterTable, IsList, IsPermGroup ] );
#T use `AutomorphismsOfTable' for that
#T (the distinction stems from the times where attributes were not allowed
#T to have non-unary methods!)
#############################################################################
##
#O TransformingPermutations( <mat1>, <mat2> )
##
## Let <mat1> and <mat2> be matrices.
## `TransformingPermutations' tries to construct
## a permutation $\pi$ that transforms the set of rows of the matrix
## <mat1> to the set of rows of the matrix <mat2>
## by permuting the columns.
##
## If such a permutation exists,
## a record with components `columns', `rows', and `group' is returned,
## otherwise `fail'.
## For $`TransformingPermutations( <mat1>, <mat2> ) = <r>' \not= `fail'$,
## we have `<mat2> =
## Permuted( List( <mat1>, x -> Permuted( x, <r>.columns ) ),<r>.rows )'.
##
## `<r>.group' is the group of matrix automorphisms of <mat2>
## (see~"MatrixAutomorphisms").
## This group stabilizes the transformation in the sense that applying any
## of its elements to the columns of <mat2>
## preserves the set of rows of <mat2>.
##
DeclareOperation( "TransformingPermutations", [ IsMatrix, IsMatrix ] );
#############################################################################
##
#O TransformingPermutationsCharacterTables( <tbl1>, <tbl2> )
##
## Let <tbl1> and <tbl2> be character tables.
## `TransformingPermutationsCharacterTables' tries to construct
## a permutation $\pi$ that transforms the set of rows of the matrix
## `Irr( <tbl1> )' to the set of rows of the matrix `Irr( <tbl2> )'
## by permuting the columns (see~"TransformingPermutations"),
## such that $\pi$ transforms also the power maps and the element orders.
##
## If such a permutation $\pi$ exists then a record with the components
## `columns' ($\pi$),
## `rows' (the permutation of `Irr( <tbl1> )' corresponding to $\pi$), and
## `group' (the permutation group of table automorphisms of <tbl2>,
## see~"AutomorphismsOfTable") is returned.
## If no such permutation exists, `fail' is returned.
##
DeclareOperation( "TransformingPermutationsCharacterTables",
[ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
#############################################################################
##
#E
|