File: ctblmoli.gi

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (702 lines) | stat: -rw-r--r-- 22,413 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
#############################################################################
##
#W  ctblmoli.gi                 GAP library                     Thomas Breuer
##
#H  @(#)$Id: ctblmoli.gi,v 4.14.2.2 2005/05/10 08:30:45 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for Molien series.
##
Revision.ctblmoli_gi :=
    "@(#)$Id: ctblmoli.gi,v 4.14.2.2 2005/05/10 08:30:45 gap Exp $";


#############################################################################
##
#F  StringOfUnivariateRationalPolynomialByCoefficients( <coeffs>, <nam> )
##
#T maybe we need more flexible ways to influence how an object is printed or
#T how its string looks like;
#T in this case, I want to influence how the indeterminate is printed.
##
BindGlobal( "StringOfUnivariateRationalPolynomialByCoefficients",
    function( coeffs, nam )
    local string, i;

    string:= "";
    for i in [ 1 .. Length( coeffs ) ] do
      if coeffs[i] <> 0 then
        if   coeffs[i] > 0 then
          if not IsEmpty( string ) then
            Append( string, "+" );
          fi;
          if coeffs[i] <> 1 then
            Append( string, String( coeffs[i] ) );
            if i <> 1 then
              Append( string, "*" );
            fi;
          elif i = 1 then
            Append( string, "1" );
          fi;
        elif coeffs[i] < 0 then
          if coeffs[i] <> -1 then
            Append( string, String( coeffs[i] ) );
            if i <> 1 then
              Append( string, "*" );
            fi;
          elif i = 1 then
            Append( string, "-1" );
          else
            Append( string, "-" );
          fi;
        fi;
        if i <> 1 then
          Append( string, nam );
        fi;
        if i > 2 then
          Append( string, "^" );
          Append( string, String( i-1 ) );
        fi;

      fi;

    od;

    if IsEmpty( string ) then
      string:= "0";
    fi;
    ConvertToStringRep( string );

    # Return the string.
    return string;
end );


#############################################################################
##
#F  CoefficientTaylorSeries( <numer>, <r>, <k>, <i> )
##
##  We have
##  $$
##     \frac{1}{( 1 - x )^k} =
##        \frac{1}{(k-1)!} \frac{d^{k-1}}{dx^{k-1}} \frac{1}{1-x}
##     \mbox{\rm\ where\ }
##     \frac{1}{1 - x} = \sum_{j=0}^{\infty} x^j .
##  $$
##  Thus we get
##  $$
##     \frac{c_i z^i}{( 1 - z^r )^k} =
##     \sum_{j=0}^{\infty} c_i \frac{(j+k-1)!}{(k-1)! j!} z^{r j + i}.
##  $$
##
##  For $p(z) = \sum_{i=0}^m c_i z^i$ where $m = u r + n$ with $0\leq n \< r$
##  we have
##  $$
##     \frac{p(z)}{( 1 - z^r )^k} =
##        \frac{1}{(k-1)!}\sum_{i=0}^m\sum_{j=0}^{\infty}
##            c_i \frac{(j+k-1)!}{(k-1)! j!} z^{r j + i} .
##  $$
##
##  The coefficient of $z^l$ with $l = g r + v$, $0\leq v \< r$ is
##  $$
##     \sum_{j=0}^{\min\{g,u\}} c_{j r + v}
##                 \prod_{\mu=1}^{k-1} \frac{g-j+\mu}{\mu} .
##  $$
##
InstallGlobalFunction( CoefficientTaylorSeries, function( numer, r, k, l )
    local i, m, u, v, g, coeff, lower, summand, mu;

    m:= Length( numer ) - 1;
    u:= Int( m / r );
    v:= l mod r;
    g:= Int( l / r );

    coeff:= 0;

    # lower bound for the summation
    if g < u then
      lower:= u-g;
    else
      lower:= 0;
    fi;

    for i in [ lower .. u ] do

      if (u-i)*r + v <= m then

        summand:= numer[ (u-i)*r + v + 1 ];
        for mu in [ 1 .. k-1 ] do
          summand:= summand * ( i - u + g + mu ) / mu;
        od;
        coeff:= coeff + summand;

      fi;

    od;

    return coeff;
end );


#############################################################################
##
#F  SummandMolienSeries( <tbl>, <psi>, <chi>, <i> )
##
InstallGlobalFunction( SummandMolienSeries, function( tbl, psi, chi, i )
    local x,          # indeterminate
          numer,      # numerator in summands corresp. to `i'-th class
          a,          # multiplicities of cycl. pol. in the denominator
          ev,         # eigenvalues of `psi' at class `i'
          n,          # element order of class `i'
          e,          # `E(n)'
          div,        # divisors of `n'
          d,          # loop over `div'
          roots,      # exponents of `d'-th prim. roots
          r;          # loop over `roots'

    x:= Indeterminate( Cyclotomics );

    if chi[i] = 0 then
      numer := Zero(x);
      a     := [ 1, 1 ];
    else

      ev := EigenvaluesChar( tbl, psi, i );
      n  := Length( ev );
      e  := E(n);
  
      # numerator of summands corresponding to `i'-th class
      numer:= chi[i] * e ^ Sum( [ 1 .. n ], j -> j * ev[j] ) * One( x );
  
      div:= ShallowCopy( DivisorsInt( n ) );
      RemoveSet( div, 1 );
      a:= List( [ 1 .. n ], x -> 0 );
      a[1]:= ev[n];
  
      for d in div do
  
        # compute $a_d$, that is, the maximal multiplicity of `ev[k]'
        # for all `k' with $\gcd(n,k) = n / d$.
        roots:= ( n / d ) * PrimeResidues( d );
        a[d]:= Maximum( ev{ roots } );
        for r in roots do
          if a[d] <> ev[r] then
            numer:= numer * ( x - e ^ r ) ^ ( a[d] - ev[r] );
          fi;
        od;
  
      od;

    fi;

    return rec( numer := numer,
                a     := a );
end );


#############################################################################
##
#F  MolienSeries( <psi> )
#F  MolienSeries( <psi>, <chi> )
#F  MolienSeries( <tbl>, <psi> )
#F  MolienSeries( <tbl>, <psi>, <chi> )
##
InstallGlobalFunction( MolienSeries, function( arg )
    local tbl,          # character table, first argument
          psi,          # character of `tbl', second argument
          chi,          # character of `tbl', optional third argument
          numers,       # list of numerators   of sum of polynomial quotients
          denoms,       # list of denominators of sum of polynomial quotients
          x,            # indeterminate
          tblclasses,   # class lengths of `tbl'
          orders,       # representative orders of `tbl'
          classes,      # list of classes of `tbl' that are not yet used
          sub,          # classes that belong to one cyclic subgroup
          i,            # represenative of `sub'
          n,            # element order of class `i'
          summand,      #
          numer,        # numerator in summands corresp. to `i'-th class
          div,          # divisors of `n'
          a,            # multiplicities of cycl. pol. in the denominator
          d,            # loop over `div'
          r,            # loop over `roots'
          f,            # `CF( n )'
          special,      # parameters of special factor in the denominator
          dd,           # loop over divisors of `d'
          p,            #
          q,            #
          j,            #
          F,            #
          pol,          #
          qr,           #
          num,          #
          pos,          #
          denpos,       #
          repr,         #
          series,       # Molien series, result
          denom,        # smallest common denominator for the summands
          denomstring,  # string of `denom', in factored form
          c,            # coefficients & valuation
          numerstring,  # string of `numer'
          denominfo,    # list of pairs `[ r, k ]' in the denominator
          rkpairs,      # list of pairs of the form `[ r, k ]'
          rr,           # `r' value of the current summand
          kk,           # `k' value of the current summand
          sumnumer,     # numerator of the current summand
          pair,         # loop over `rkpairs'
          min;          # minimum of `kk' and `k' value of the current pair

    # Check and get the arguments.
    if   Length( arg ) = 1 and IsClassFunction( arg[1] ) then
      tbl:= UnderlyingCharacterTable( arg[1] );
      psi:= ValuesOfClassFunction( arg[1] );
      chi:= List( psi, x -> 1 );
    elif Length( arg ) = 2 and IsClassFunction( arg[1] )
                           and IsClassFunction( arg[2] ) then
      tbl:= UnderlyingCharacterTable( arg[1] );
      psi:= ValuesOfClassFunction( arg[1] );
      chi:= ValuesOfClassFunction( arg[2] );
    elif Length( arg ) = 2 and IsOrdinaryTable( arg[1] )
                           and IsHomogeneousList( arg[2] ) then
      tbl:= arg[1];
      psi:= arg[2];
      chi:= List( psi, x -> 1 );
    elif Length( arg ) = 3 and IsOrdinaryTable( arg[1] )
                           and IsList( arg[2] )
                           and IsList( arg[3] ) then
      tbl:= arg[1];
      psi:= arg[2];
      chi:= arg[3];
    else
      Error( "usage: MolienSeries( [<tbl>, ]<psi>[, <chi>] )" );
    fi;

    # Initialize lists of numerators and denominators
    # of summands of the form $p_j(z) / (z^r-1)^k$.
    # In `numers[ <j> ]' the coefficients list of $p_j(z)$ is stored,
    # in `denoms[ <j> ]' the pair `[ r, k ]'.
    # `pol' is an additive polynomial.
    numers:= [];
    denoms:= [];
    x:= Indeterminate( Rationals );
    pol:= Zero( x );

    tblclasses:= SizesConjugacyClasses( tbl );
    classes:= [ 1 .. Length( tblclasses ) ];
    orders:= OrdersClassRepresentatives( tbl );

    # Take the cyclic subgroups of `tbl'.
    while not IsEmpty( classes ) do

      # Compute the next cyclic subgroup,
      # remove the classes of the cyclic subgroup,
      # take a representative.
      sub:= ClassOrbit( tbl, classes[1] );
      SubtractSet( classes, sub );
      i:= sub[1];

      # Compute $v(g) = \frac{\chi(g) \det(D(g))}{\det(z I - D(g))}$
      # for $g$ in class `i'.

      # This is encoded as record with components `numer' and `a'
      # where `a[r]' means the multiplicity of the `r'-th cyclotomic
      # polynomial in the denominator.
      summand:= SummandMolienSeries( tbl, psi, chi, i );

      # Omit summands with zero numerator.
      if not IsZero( summand.numer ) then

        numer:= CoefficientsOfLaurentPolynomial( summand.numer );
        a:= summand.a;

        # Compute the sum over class representatives of the cyclic
        # subgroup containing $g$, i.e., the relative trace of $v(g)$.
        n:= orders[i];
        f:= CF( n );
        numer:= List( ShiftedCoeffs( numer[1], numer[2] ),
                      y -> Trace( f, y ) )
                * ( Length( sub ) / Phi(n) );
        numer:= UnivariatePolynomial( Rationals, numer, 1 );

        # Try to reduce the number of factors in the denominator
        # by forming one factor of the form $(z^r - 1)^k$.
        # But we still want to guarantee that the factors are pairwise
        # coprime, that is, the exponents of all involved cyclotomic
        # polynomials must be equal.

        special:= false;

        if a[1] > 0 then

          # There is such a ``special\'\' factor.

          div:= DivisorsInt( n );
          for d in Reversed( div ) do

            if a[1] <> 0 and ForAll( DivisorsInt(d), y -> a[y] = a[1] ) then

              # The special factor is $( z^d - 1 ) ^ a[d]$.
              special:= [ d, a[d] ];
              for dd in DivisorsInt( d ) do
                a[dd]:= 0;
              od;

            fi;

          od;

        fi;

        # Compute the product of the remaining factors in the denominator.
        F:= One( x );
        for j in [ 1 .. n ] do
          if a[j] <> 0 then
            F:= F * CyclotomicPolynomial( Rationals, j ) ^ a[j];
          fi;
        od;

        if special <> false then

          # Split the summand into two summands, with denominators
          # the special factor `f' resp. the remaining factors `F'.
          f:= ( x ^ special[1] - 1 ) ^ special[2];
          repr:= GcdRepresentation( F, f );

          # Reduce the numerators if possible.
          num:= numer * repr[1];
          if special[1] * special[2]
             < DegreeOfLaurentPolynomial( num ) then
            qr:= QuotientRemainder( num, f );
            pol:= pol + tblclasses[i] * qr[1];
            num:= qr[2];
          fi;

          # Store the summand.
          denpos:= Position( denoms, special, 0 );
          if denpos = fail then
            Add( denoms, special );
            Add( numers, tblclasses[i] * num );
          else
            numers[ denpos ]:= numers[ denpos ] + tblclasses[i] * num;
          fi;

          # The remaining term is `numer \* repr[2] / F'.
          numer:= numer * repr[2];

        fi;

        # Split the quotient into a sum of quotients
        # whose denominators are cyclotomic polynomials.

        # We have $1 / \prod_{i=1}^k f_i = \sum_{i=1}^k p_i / f_i$
        # if the $f_i$ are pairwise coprime,
        # where the polynomials $p_i$ are computed by
        # $r_i \prod_{j>i} f_j + q_i f_i = 1$ for $1 \leq i \leq k-1$,
        # $r_k = 1$, and $p_i = r_i \prod_{j=1}^{i-1} q_j$.

        # In the end we have a sum of quotients with denominator of the
        # form $(z^r-1)^k$.  We store the pair $[ r, k ]$ in the list
        # `denoms', and $(-1)^k$ times the numerator in the list `numers'.

        pos:= 1;
        q:= 1;

        while pos <= n do

          if a[ pos ] <> 0 then

            # $f_i$ is the next factor encoded in `a'.
            f:= CyclotomicPolynomial( Rationals, pos ) ^ a[ pos ];
            F:= F / f;

            # $\prod_{j>i} f_j$ is stored in `F', and $f_i$ is in `f'.

            # at first position $r_i$, at second position $q_i$
            repr:= GcdRepresentation( F, f );

            # The numerator $p_i$.
            p:= q * repr[1];
            q:= q * repr[2];

            # We blow up the denominator $f_i$, and encode the summands.
            dd:= ShallowCopy( DivisorsInt( pos ) );
            RemoveSet( dd, pos );
            for r in dd do
              p:= p * CyclotomicPolynomial( Rationals, r ) ^ a[ pos ];
            od;

            # Reduce the numerators if possible.
            num:= numer * p;
            if DegreeOfLaurentPolynomial( num )
               > pos * a[ pos ] then
              qr:= QuotientRemainder( num, (x^pos - 1)^a[pos] );
              pol:= pol + tblclasses[i] * qr[1];
              num:= qr[2];
            fi;

            # Store the summand.
            denpos:= Position( denoms, [ pos, a[ pos ] ], 0 );
            if denpos = fail then
              Add( denoms, [ pos, a[ pos ] ] );
              Add( numers, tblclasses[i] * num );
            else
              numers[ denpos ]:= numers[ denpos ] + tblclasses[i] * num;
            fi;

          fi;

          pos:= pos + 1;

        od;

      fi;

    od;

    # Now compute the Taylor series for each summand.
    for i in [ 1 .. Length( numers ) ] do
      num:= CoefficientsOfLaurentPolynomial( numers[i] );
      num:= ShiftedCoeffs( num[1], num[2] );
      if IsEmpty( num ) then
        Unbind( numers[i] );
      else
        numers[i]:= rec( numer := num,
                         r     := denoms[i][1],
                         k     := denoms[i][2] );

        # Replace denominators $(z^r - 1)^k$ by $(1 - z^r)^k$.
        if numers[i].k mod 2 = 1 then
          numers[i].numer:= AdditiveInverse( numers[i].numer );
        fi;
      fi;
    od;

    numers:= Compacted( numers );

    # Sort the summands according to descending `r' component,
    # and for the same `r', according to descending `k'.
    Sort( numers, function( x, y )
                    return x.r > y.r or ( x.r = y.r and x.k > y.k );
                  end );

    pol:= CoefficientsOfLaurentPolynomial( pol );
    pol:= ShiftedCoeffs( pol[1], pol[2] );

    # Compute the display string.
    # First translate the sum of fractions into a single fraction.
    numer:= Zero( x );
    denom:= One( x );
    denomstring:= "";
    denominfo:= [];
    rkpairs:= [];

    for summand in numers do

      rr:= summand.r;
      kk:= summand.k;
      sumnumer:= UnivariatePolynomial( Rationals, summand.numer )
                 * denom;
      for pair in rkpairs do
        if kk <> 0 and pair[1] mod rr = 0 then
          min:= Minimum( kk, pair[2] );
          sumnumer:= sumnumer / ( 1 - x^rr )^min;
          kk:= kk - min;
        fi;
      od;
      if kk <> 0 then
        # Blow up the common denominator.
        numer:= numer * ( 1 - x^rr )^kk;
        denom:= denom * ( 1 - x^rr )^kk;
        Add( rkpairs, [ rr, kk ] );
        Append( denomstring, "(1-z" );
        if 1 < rr then
          Add( denomstring, '^' );
          Append( denomstring, String(rr) );
        fi;
        Add( denomstring, ')' );
        if 1 < kk then
          Add( denomstring, '^' );
          Append( denomstring, String(kk) );
        fi;
        Add( denomstring, '*' );
        Append( denominfo, [ rr, kk ] );
      fi;
      numer:= numer + sumnumer;
    od;
    if not IsEmpty( pol ) then
      numer:= numer + denom * UnivariatePolynomial( Rationals, pol );
    fi;
    numer:= numer / Size( tbl );
    if psi[1] mod 2 = 1 then
      numer:= - numer;
    fi;
    denomstring:= denomstring{ [ 1 .. Length(denomstring)-1] };
    ConvertToStringRep( denomstring );

    c:= CoefficientsOfLaurentPolynomial( numer );
    numerstring:= StringOfUnivariateRationalPolynomialByCoefficients(
        Concatenation( ListWithIdenticalEntries( c[2], 0 ), c[1] ), "z" );

    # Compute the series.
    series:= numer / denom;
#T avoid forming this quotient!
    SetIsUnivariateRationalFunction( series, true );

    # Set the info record.
    SetMolienSeriesInfo( series,
                         rec( summands    := numers,
                              size        := Size( tbl ),
                              degree      := psi[1],
                              numer       := numer,
                              denom       := denom,
                              denominfo   := denominfo,
                              numerstring := numerstring,
                              denomstring := denomstring,
                              ratfun      := series
                             ) );

    # Return the series.
    return series;
end );


#############################################################################
##
#F  MolienSeriesWithGivenDenominator( <molser>, <list> )
##
InstallGlobalFunction( MolienSeriesWithGivenDenominator,
    function( molser, list )
    local info,
          denominfo,
          x,
          one,
          denom,
          pair,
          numer,
          c,
          numerstring,
          denomstring,
          rr, kk,
          coeffs,
          series;

    if not HasMolienSeriesInfo( molser ) then
      Error( "MolienSeriesInfo must be known for <molser>" );
    fi;
    info:= MolienSeriesInfo( molser );

    # Compute the numerator that belongs to the desired denominator.
    list:= Collected( list );
    x:= Indeterminate( Rationals );
    one:= One( x );
    denom:= one;
    for pair in list do
      denom:= denom * ( one - x^pair[1] )^pair[2];
    od;
    numer:= denom * info.numer / info.denom;
    if not IsUnivariatePolynomial( numer ) then
      return fail;
    fi;

    # Create the strings for numerator and denominator.
    c:= CoefficientsOfLaurentPolynomial( numer );
    numerstring:= StringOfUnivariateRationalPolynomialByCoefficients(
        Concatenation( ListWithIdenticalEntries( c[2], 0 ), c[1] ), "z" );

    denomstring:= "";
    for pair in Reversed( list ) do
      rr:= pair[1];
      kk:= pair[2];
      Append( denomstring, "(1-z" );
      if 1 < rr then
        Add( denomstring, '^' );
        Append( denomstring, String(rr) );
      fi;
      Add( denomstring, ')' );
      if 1 < kk then
        Add( denomstring, '^' );
        Append( denomstring, String(kk) );
      fi;
      Add( denomstring, '*' );
    od;
    denomstring:= denomstring{ [ 1 .. Length(denomstring)-1] };
    ConvertToStringRep( denomstring );

    # Create the Molien series object (create the rat. function
    # from the given one, without division).
    coeffs:= CoefficientsOfUnivariateRationalFunction( info.ratfun );
    series:= UnivariateRationalFunctionByExtRep( FamilyObj( info.ratfun ),
        coeffs[1], coeffs[2], coeffs[3],
        IndeterminateNumberOfUnivariateRationalFunction( info.ratfun ) );
    SetIsUnivariateRationalFunction( series, true );
#T why is this not automatically maintained?
    SetMolienSeriesInfo( series,
                         rec(
                              # We need not adjust these components
                              summands:= info.summands,
                              size:= info.size,
                              degree:= info.degree,

                              # These components are new.
                              ratfun:= series,
                              numer:= numer,
                              denom:= denom,
                              denominfo := Immutable( list ),
                              numerstring := numerstring,
                              denomstring := denomstring ) );

    # Return the new series.
    return series;
end );


#############################################################################
##
#M  ViewObj( <molser> ) . . . . . . . . . . . . . . . . . for a Molien series
#M  PrintObj( <molser> )  . . . . . . . . . . . . . . . . for a Molien series
##
ViewMolienSeries := function( molser )
    molser:= MolienSeriesInfo( molser );
    Print( "( ", molser.numerstring, " ) / ( ", molser.denomstring, " )" );
end;

InstallMethod( ViewObj,
    "for a Molien series",
    [ IsRationalFunction and IsUnivariateRationalFunction
      and HasMolienSeriesInfo ],
    ViewMolienSeries );

InstallMethod( PrintObj,
    "for a Molien series",
    [ IsRationalFunction and IsUnivariateRationalFunction
      and HasMolienSeriesInfo ],
    ViewMolienSeries );


#############################################################################
##
#F  ValueMolienSeries( series, i )
##
InstallGlobalFunction( ValueMolienSeries, function( series, i )
    local value;

    series:= MolienSeriesInfo( series );
    value:= Sum( series.summands,
                 s -> CoefficientTaylorSeries( s.numer, s.r, s.k, i ), 0 );

    # There is a factor $\frac{(-1)^{\psi(1)}}{\|G\|}$.
    if series.degree mod 2 = 1 then
      value:= AdditiveInverse( value );
    fi;

    return value / series.size;
end );


#############################################################################
##
#E