1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
#############################################################################
##
#W ctblsolv.gd GAP library Thomas Breuer
##
#H @(#)$Id: ctblsolv.gd,v 4.15 2002/04/15 10:04:35 sal Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of operations for computing
## characters of solvable groups.
##
Revision.ctblsolv_gd :=
"@(#)$Id: ctblsolv.gd,v 4.15 2002/04/15 10:04:35 sal Exp $";
#############################################################################
##
#V BaumClausenInfoDebug . . . . . . . . . . . . . . testing BaumClausenInfo
##
## This global record contains functions used for testing intermediate
## results in `BaumClausenInfo' computations;
## they are called only inside `Assert' statements.
##
DeclareGlobalVariable( "BaumClausenInfoDebug" );
#############################################################################
##
#A BaumClausenInfo( <G> ) . . . . . info about irreducible representations
##
## Called with a group <G>, `BaumClausenInfo' returns a record with the
## following components.
## \beginitems
## `pcgs' &
## each representation is encoded as a list, the entries encode images
## of the elements in `pcgs',
##
## `kernel' &
## the normal subgroup such that the result describes the irreducible
## representations of the corresponding factor group only
## (so *all* irreducible nonlinear representations are described if
## and only if this subgroup is trivial),
##
## `exponent' &
## the roots of unity in the representations are encoded as exponents
## of a primitive `exponent'-th root,
##
## `lin' &
## the list that encodes all linear representations of <G>,
## each representation is encoded as a list of exponents,
##
## `nonlin' &
## a list of nonlinear irreducible representations,
## each a list of monomial matrices.
## \enditems
##
## Monomial matrices are encoded as records with components
## `perm' (the permutation part) and `diag' (the nonzero entries).
## E. g., the matrix `rec( perm := [ 3, 1, 2 ], diag := [ 1, 2, 3 ] )'
## stands for
## [ . . 1 ] [ e^1 . . ] [ . . e^3 ]
## [ 1 . . ] * [ . e^2 . ] = [ e^1 . . ] ,
## [ . 1 . ] [ . . e^3 ] [ . e^2 . ]
## where `e' is the value of `exponent' in the result record.
##
## The algorithm of Baum and Clausen guarantees to compute all
## irreducible representations for abelian by supersolvable groups;
## if the supersolvable residuum of <G> is not abelian then this
## implementation computes the irreducible representations of the factor
## group of <G> by the derived subgroup of the supersolvable residuum.
##
## For this purpose, a composition series
## $\<> \< G_{lg} \< G_{lg-1} \< \ldots \< G_1 = <G>$
## of <G> is used, where the maximal abelian and all nonabelian composition
## subgroups are normal in <G>.
## Iteratively the representations of $G_i$ are constructed from those of
## $G_{i+1}$.
##
## Let $[ g_1, g_2, \ldots, g_{lg} ]$ be a pcgs of <G>, and
## $G_i = \< G_{i+1}, g_i >$.
## The list `indices' holds the sizes of the composition factors, i.e.,
## $`indices[i]' = [ G_i \colon G_{i+1} ]$.
##
## The iteration is an application of the theorem of Clifford.
## An irreducible representation of $G_{i+1}$ has either
## $p = [ G_i \colon G_{i+1} ]$ extensions to $G_i$,
## or the induced representation is irreducible in $G_i$.
##
## In the case of extensions, a representing matrix for the canonical
## generator $g_i$ is constructed.
## The induction can be performed directly, afterwards the induced
## representation is modified such that the restriction to $G_{i+1}$
## decomposes into the direct sum of its constituents as block diagonal
## decomposition, and the matrix for $g_i$ is constructed.
##
## So the construction guarantees that the restriction of a
## representation of $G_i$ to $G_{i+1}$ decomposes (physically) into a
## direct sum of irreducible representations of $G_{i+1}$.
## Moreover, two constituents are equivalent if and only if they are equal.
##
DeclareAttribute( "BaumClausenInfo", IsGroup );
#############################################################################
##
#A IrreducibleRepresentations( <G> )
#O IrreducibleRepresentations( <G>, <F> )
##
## Called with a finite group <G> and a field <F>,
## `IrreducibleRepresentations' returns a list of representatives of the
## irreducible matrix representations of <G> over <F>, up to equivalence.
##
## If <G> is the only argument then `IrreducibleRepresentations' returns a
## list of representatives of the absolutely irreducible complex
## representations of <G>, up to equivalence.
##
## At the moment, methods are available for the following cases: If <G> is
## abelian by supersolvable the method of~\cite{BC94} is used.
##
## Otherwise, if <F> and <G> are both finite, the regular module of <G> is
## split by MeatAxe methods which can make this an expensive operation.
##
## Finally, if <F> is not given (i.e. it defaults to the cyclotomic
## numbers) and <G> is a finite group, the method of \cite{Dix93} (see
## "IrreducibleRepresentationsDixon") is used.
##
## For other cases no methods are implemented yet.
##
## See also `IrreducibleModules', which provides efficient
## methods for solvable groups.
##
DeclareAttribute( "IrreducibleRepresentations", IsGroup and IsFinite );
DeclareOperation( "IrreducibleRepresentations",
[ IsGroup and IsFinite, IsField ] );
#############################################################################
##
#A IrrBaumClausen( <G> ) . . . . irred. characters of a supersolvable group
##
## `IrrBaumClausen' returns the absolutely irreducible ordinary characters
## of the factor group of the finite solvable group <G>
## by the derived subgroup of its supersolvable residuum.
##
## The characters are computed using the algorithm by Baum and Clausen
## (see~\cite{BC94}).
## An error is signalled if <G> is not solvable.
##
DeclareAttribute( "IrrBaumClausen", IsGroup );
#############################################################################
##
#F InducedRepresentationImagesRepresentative( <rep>, <H>, <R>, <g> )
##
## Let $<rep>_H$ denote the restriction of the group homomorphism <rep> to
## the group <H>, and $\phi$ the induced representation of $<rep>_H$ to $G$,
## where <R> is a transversal of <H> in $G$.
## `InducedRepresentationImagesRepresentative' returns the image of the
## element <g> of $G$ under $\phi$.
##
DeclareGlobalFunction( "InducedRepresentationImagesRepresentative" );
#############################################################################
##
#F InducedRepresentation( <rep>, <G> ) . . . . induced matrix representation
#F InducedRepresentation( <rep>, <G>, <R> )
#F InducedRepresentation( <rep>, <G>, <R>, <H> )
##
## Let <rep> be a matrix representation of the group $H$, which is a
## subgroup of the group <G>.
## `InducedRepresentation' returns the induced matrix representation of <G>.
##
## The optional third argument <R> is a right transversal of $H$ in <G>.
## If the fourth optional argument <H> is given then it must be a subgroup
## of the source of <rep>, and the induced representation of the restriction
## of <rep> to <H> is computed.
##
DeclareGlobalFunction( "InducedRepresentation" );
#T Currently the returned homomorphism has `Image' etc. methods which
#T return plain lists not block matrices.
#T Before the function can be documented, this behaviour should be changed.
#############################################################################
##
#F ProjectiveCharDeg( <G> ,<z> ,<q> )
##
## is a collected list of the degrees of those faithful and absolutely
## irreducible characters of the group <G> in characteristic <q> that
## restrict homogeneously to the group generated by <z>, which must be
## central in <G>.
## Only those characters are counted that have value a multiple of
## `E( Order(<z>) )' on <z>.
##
DeclareGlobalFunction( "ProjectiveCharDeg" );
#############################################################################
##
#F CoveringTriplesCharacters( <G>, <z> ) . . . . . . . . . . . . . . . local
##
## <G> must be a supersolvable group, and <z> a central element in <G>.
## `CoveringTriplesCharacters' returns a list of tripels $[ T, K, e ]$
## such that every irreducible character $\chi$ of <G> with the property
## that $\chi(<z>)$ is a multiple of `E( Order(<z>) )' is induced from a
## linear character of some $T$, with kernel $K$.
## The element $e \in T$ is chosen such that $\langle e K \rangle = T/K$.
##
## The algorithm is in principle the same as `ProjectiveCharDeg',
## but the recursion stops if $<G> = <z>$.
## The structure and the names of the variables are the same.
##
DeclareGlobalFunction( "CoveringTriplesCharacters" );
#############################################################################
##
#A IrrConlon( <G> )
##
## For a finite solvable group <G>, `IrrConlon' returns a list of certain
## irreducible characters of <G>, among those all irreducibles that have the
## supersolvable residuum of <G> in their kernels;
## so if <G> is supersolvable, all irreducible characters of <G> are
## returned.
## An error is signalled if <G> is not solvable.
##
## The characters are computed using Conlon's algorithm
## (see~\cite{Con90a} and~\cite{Con90b}).
## For each irreducible character in the returned list,
## the monomiality information (see~"TestMonomial") is stored.
##
DeclareAttribute( "IrrConlon", IsGroup );
#############################################################################
##
#E
|