File: liefam.gd

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (163 lines) | stat: -rw-r--r-- 6,283 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#############################################################################
##
#W  liefam.gd                   GAP library                     Thomas Breuer
##
#H  @(#)$Id: liefam.gd,v 4.24 2002/04/15 10:04:54 sal Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the definition of the family of Lie elements of a
##  family of ring elements.

#1
## Let $x$ be a ring element, then `LieObject(x)' wraps $x$ up into an
## object that contains the same data (namely $x$). The multiplication
## `*' for Lie objects is formed by taking the commutator. More exactly,
## if $l_1$ and $l_2$ are the Lie objects corresponding to
##  the ring elements $r_1$ and $r_2$, then $l_1 * l_2$ is equal to the
##  Lie object corresponding to $r_1 * r_2 - r_2 * r_2$. Two rules
##  for Lie objects are worth noting:
##  \beginlist%unordered
##  \item{--}
##    An element is *not* equal to its Lie element.
##
##  \item{--}
##    If we take the Lie object of an ordinary (associative) matrix
##    then this is again a matrix;
##    it is therefore a collection (of its rows) and a list.
##    But it is *not* a collection of collections of its entries,
##    and its family is *not* a collections family.
## \endlist

##
##  Given a family $F$ of ring elements, we can form its Lie family $L$.
##  The elements of $F$ and $L$ are in bijection, only the multiplications
##  via `\*' differ for both families.
##  More exactly, if $l_1$ and $l_2$ are the Lie elements corresponding to
##  the elements $f_1$ and $f_2$ in $F$, we have $l_1 * l_2$ equal to the
##  Lie element corresponding to $f_1 * f_2 - f_2 * f_2$.
##
##  The main reason to distinguish elements and Lie elements on the family
##  level is that this helps to avoid forming domains that contain
##  elements of both types.
##  For example, if we could form vector spaces of matrices then at first
##  glance it would be no problem to have both ordinary and Lie matrices
##  in it, but as soon as we find out that the space is in fact an algebra
##  (e.g., because its dimension is that of the full matrix algebra),
##  we would run into strange problems.
##
##  Note that the family situation with Lie families may be not familiar.
##
##  \beginlist%unordered
##  \item{--}
##    An element is *not* equal to its Lie element.
##
##  \item{--}
##    If we take the Lie object of an ordinary (associative) matrix
##    then this is again a matrix;
##    it is therefore a collection (of its rows) and a list.
##    But it is *not* a collection of collections of its entries,
##    and its family is *not* a collections family.
##
##  \item{--}
##    We have to be careful when installing methods for certain types
##    of domains that may involve Lie elements.
##    For example, the zero element of a matrix space is either an ordinary
##    matrix or its Lie element, depending on the space.
##    So either the method must be aware of both cases, or the method
##    selection must distinguish the two cases.
##    In the latter situation, only one method may be applicable to each
##    case; this means that it is not sufficient to treat the Lie case
##    with the additional requirement `IsLieObjectCollection' but that
##    we must explicitly require non-Lie elements for the non-Lie case.
##
##  \item{--}
##    Being a full matrix space is a property that may hold for a space
##    of ordinary matrices or a space of Lie matrices.
##    So methods for full matrix spaces must also be aware of Lie matrices.
##  \endlist
##
Revision.liefam_gd :=
    "@(#)$Id: liefam.gd,v 4.24 2002/04/15 10:04:54 sal Exp $";


#############################################################################
##
#C  IsLieObject( <obj> )
#C  IsLieObjectCollection( <obj> )
##
##  An object lies in `IsLieObject' if and only if it lies in a family
##  constructed by `LieFamily'.
##
DeclareCategory( "IsLieObject",
        IsRingElement
    and IsZeroSquaredElement
    and IsJacobianElement );

DeclareCategoryCollections( "IsLieObject" );


#############################################################################
##
#A  LieFamily( <Fam> )
##
##  is a family $F$ in bijection with the family <Fam>,
##  but with the Lie bracket as infix multiplication.
##  That is, for $x$, $y$ in <Fam>, the product of the images in $F$ will be
##  the image of $x \* y - y \* x$.
##
##  The standard type of objects in a Lie family <F> is `<F>!.packedType'.
##
##  \indextt{Embedding!for Lie algebras}
##  The bijection from <Fam> to $F$ is given by `Embedding( <Fam>, $F$ )';
##  this bijection respects addition and additive inverses.
##
DeclareAttribute( "LieFamily", IsFamily );


#############################################################################
##
#A  UnderlyingFamily( <Fam> )
##
##  If <Fam> is a Lie family then `UnderlyingFamily( <Fam> )'
##  is a family $F$ such that `<Fam> = LieFamily( $F$ )'.
##
DeclareAttribute( "UnderlyingFamily", IsObject );


#############################################################################
##
#A  LieObject( <obj> )
##
##  Let <obj> be a ring element. Then `LieObject( <obj> )' is the
##  corresponding Lie object. If <obj> lies in the family <F>,
##  then `LieObject( <obj> )' lies in the family LieFamily( <F> )
##  (see~"LieFamily").
##
DeclareAttribute( "LieObject", IsRingElement );


#############################################################################
##
#F  IsLieObjectsModule( <V> )
##
##  If a free $F$-module <V> is in the filter `IsLieObjectsModule' then
##  this expresses that <V> consists of Lie objects (see~"..."),
##  and that <V> is handled via the mechanism of nice bases (see~"...")
##  in the following way.
##  Let $K$ be the default field generated by the vector space generators of
##  <V>.
##  Then the `NiceFreeLeftModuleInfo' value of <V> is irrelevant,
##  and the `NiceVector' value of $v \in <V>$ is defined as the underlying
##  element for which <v> is obtained as `LieObject' value.
##
DeclareHandlingByNiceBasis( "IsLieObjectsModule",
    "for free left modules of Lie objects" );


#############################################################################
##
#E