1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
|
#############################################################################
##
#W lierep.gd GAP library Willem de Graaf
#W and Craig A. Struble
##
#H @(#)$Id: lierep.gd,v 4.24 2002/06/07 06:45:25 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of attributes, properties, and
## operations for modules over Lie algebras.
##
Revision.lierep_gd :=
"@(#)$Id: lierep.gd,v 4.24 2002/06/07 06:45:25 gap Exp $";
#1
##
## An $s$-cochain of a module $V$ over a Lie algebra $L$, is an $s$-linear
## map
## $$
## c: L\times\cdots\times L \to V \hbox{ ($s$ factors $L$)}
## $$
## that is skew-symmetric (meaning that if any of the arguments are
## interchanged, $c$ changes to $-c$).
##
## Let $\{x_1,\ldots,x_n\}$ be a basis of $L$. Then any $s$-cochain is
## determined by the values $c( x_{i_1},\ldots, x_{i_s} )$, where
## $1\le i_1 \< i_2 \< \cdots \< i_s \le \dim L$.
## Now this value again is a linear combination of basis elements of $V$:
## $c( x_{i_1},\ldots, x_{i_s} ) = \sum \lambda^k_{i_1,\ldots, i_s} v_k$.
## Denote the dimension of $V$ by $r$.
## Then we represent an $s$-cocycle by a list of $r$ lists.
## The $j$-th of those lists consists of entries of the form
## $$
## [ [i_1,i_2,\ldots,i_s], \lambda^j_{i_1,\ldots, i_s} ]
## $$
## where the coefficient on the second position is non-zero.
## (We only store those entries for which this coefficient is non-zero.)
## It follows that every $s$-tuple $(i_1,\ldots,i_s)$ gives rise to $r$
## basis elements.
##
## So the zero cochain is represented by a list of the form
## $[ [ ], [ ], \ldots , [ ] ]$. Furthermore, if $V$ is, e.g.,
## $4$-dimensional, then the $2$-cochain represented by
##
## \begintt
## [ [ [ [1,2], 2] ], [ ], [ [ [1,2], 1/2 ] ], [ ] ]
## \endtt
##
## maps the pair $(x_1,x_2)$ to $2v_1+1/2 v_3$ (where $v_1$ is the first
## basis element of $V$, and $v_3$ the third), and all other pairs to zero.
##
## By definition, $0$-cochains are constant maps $c( x ) = v_c\in V$ for all
## $x \in L$. So $0$-cochains have a different representation: they are just
## represented by the list $[ v_c ]$.
##
## Cochains are constructed using the function `Cochain' (see~"Cochain"),
## if <c> is a cochain, then its corresponding list is returned by
## `ExtRepOfObj( <c> )'.
##
##############################################################################
##
#C IsCochain( <obj> )
#C IsCochainCollection( <obj> )
##
## Categories of cochains and of collections of cochains.
##
DeclareCategory( "IsCochain", IsVector );
DeclareCategoryCollections( "IsCochain" );
#############################################################################
##
#O Cochain( <V>, <s>, <obj> )
##
## Constructs a <s>-cochain given by the data in <obj>, with respect to
## the Lie algebra module <V>. If <s> is non-zero, then <obj> must be
## a list.
##
DeclareOperation( "Cochain", [ IsLeftModule, IsInt, IsObject ] );
#############################################################################
##
#O CochainSpace( <V>, <s> )
##
## Returns the space of all <s>-cochains with respect to <V>.
##
DeclareOperation( "CochainSpace", [ IsAlgebraModule, IS_INT ] );
#############################################################################
##
#F ValueCochain( <c>, <y1>, <y2>,...,<ys> )
##
## Here <c> is an <s>-cochain. This function returns the value of
## <c> when applied to the <s> elements <y1> to <ys> (that lie in the
## Lie algebra acting on the module corresponding to <c>). It is also
## possible to call this function with two arguments: first <c> and then
## the list containing `<y1>,...,<ys>'.
##
DeclareGlobalFunction( "ValueCochain" );
#############################################################################
##
#V LieCoboundaryOperator( <c> )
##
## This is a function that takes an <s>-cochain, and returns an <s+1>-cochain.
## The coboundary operator is applied.
##
DeclareGlobalFunction( "LieCoboundaryOperator", "Lie coboundary operator" );
#############################################################################
##
#O Cocycles( <V>, <s> )
##
## is the space of all <s>-cocycles with respect to the Lie algebra module
## <V>. That is the kernel of the coboundary operator when restricted to
## the space of <s>-cochains.
##
DeclareOperation( "Cocycles", [ IsAlgebraModule, IS_INT ] );
#############################################################################
##
#O Coboundaries( <V>, <s> )
##
## is the space of all <s>-coboundaries with respect to the Lie algebra
## module <V>. That is the image of the coboundary operator, when applied
## to the space of <s-1>-cochains. By definition the space of all
## 0-coboundaries is zero.
##
DeclareOperation( "Coboundaries", [ IsAlgebraModule, IS_INT ] );
############################################################################
##
#P IsWeylGroup( <G> )
##
## A Weyl group is a group generated by reflections, with the attribute
## `SparseCartanMatrix' set.
##
DeclareProperty( "IsWeylGroup", IsGroup );
############################################################################
##
#A WeylGroup( <R> )
##
## The Weyl group of the root system <R>. It is generated by the simple
## reflections. A simple reflection is represented by a matrix, and the
## result of letting a simple reflection `m' act on a weight `w' is obtained
## by `w*m'.
##
##
DeclareAttribute( "WeylGroup", IsRootSystem );
############################################################################
##
#A SparseCartanMatrix( <W> )
##
## This is a sparse form of the Cartan matrix of the
## corresponding root system. If we denote the Cartan matrix by `C',
## then the sparse Cartan matrix of <W> is a list (of length equal to the
## length of the Cartan matrix), where the `i'-th entry is a list
## consisting of elements `[ j, C[i][j] ]', where `j' is such that
## `C[i][j]' is non-zero.
##
##
DeclareAttribute( "SparseCartanMatrix", IsWeylGroup );
############################################################################
##
#O ApplySimpleReflection( <SC>, <i>, <wt> )
##
## Here <SC> is the sparse Cartan matrix of a Weyl group. This
## function applies the <i>-th simple reflection to the weight
## <wt>, thus changing <wt>.
##
DeclareOperation( "ApplySimpleReflection", [ IsList, IS_INT, IsList ] );
############################################################################
##
#A LongestWeylWordPerm( <W> )
##
## Let $g_0$ be the longest element in the Weyl group <W>, and let
## $\{\alpha_1,\ldots, \alpha_l\}$ be a simple system of the corresponding
## root system. Then $g_0$ maps $\alpha_i$ to $-\alpha_{\sigma(i)}$, where
## $\sigma$ is a permutation of $(1,\ldots ,l)$. This function returns
## that permutation.
##
DeclareAttribute( "LongestWeylWordPerm", IsWeylGroup );
############################################################################
##
#O ConjugateDominantWeight( <W>, <wt> )
#O ConjugateDominantWeightWithWord( <W>, <wt> )
##
## Here <W> is a Weyl group and <wt> a weight (i.e., a list of integers).
## This function returns the unique dominant weight conjugate to <wt>
## under <W>.
##
## `ConjugateDominantWegihtWithWord( <W>, <wt> )' returns a list of two
## elements. The first of these is the dominant weight conjugate do <wt>.
## The second element is a list of indices of simple reflections that
## have to be applied to <wt> in order to get the dominant weight conjugate
## to it.
##
DeclareOperation( "ConjugateDominantWeight", [ IsWeylGroup, IsList ] );
DeclareOperation( "ConjugateDominantWeightWithWord", [ IsWeylGroup, IsList ]);
############################################################################
##
#O WeylOrbitIterator( <W>, <wt> )
##
## Returns an iterator for the orbit of the weight <wt> under the
## action of the Weyl group <W>.
##
DeclareOperation( "WeylOrbitIterator", [ IsWeylGroup, IsList ] );
############################################################################
##
#A PositiveRootsAsWeights( <R> )
##
## Returns the list of positive roots of <R>, represented in the basis
## of fundamental weights.
##
DeclareAttribute( "PositiveRootsAsWeights", IsRootSystem );
############################################################################
##
#O DominantWeights( <R>, <maxw> )
##
## Returns a list consisting of two lists. The first of these contains
## the dominant weights (written on the basis of fundamental weights)
## of the irreducible highest-weight module over the Lie algebra with
## root system <R>. The $i$-th element of the second list is the
## level of the $i$-th dominant weight. (Where level is defined as follows.
## For a weight $\mu$ we write $\mu=\lambda-\sum_i k_i \alpha_i$, where
## the $\alpha_i$ are the simple roots, and $\lambda$ the highest weight.
## Then the level of $\mu$ is $\sum_i k_i$.
##
DeclareOperation( "DominantWeights", [ IsRootSystem, IsList ] );
############################################################################
##
#O DominantCharacter( <L>, <maxw> )
#O DominantCharacter( <R>, <maxw> )
##
## For a highest weight <maxw> and a semisimple Lie algebra <L>, this
## returns the dominant weights of the highest-weight module over <L>,
## with highest weight <maxw>. The output is a list of two lists, the
## first list contains the dominant weights; the second list contains
## their multiplicities.
##
## The first argument can also be a root system, in which case
## the dominant character of the highest-weight module over the
## corresponding semisimple Lie algebra is returned.
##
DeclareOperation( "DominantCharacter", [ IsRootSystem, IsList ] );
#############################################################################
##
#O DecomposeTensorProduct( <L>, <w1>, <w2> )
##
## Here <L> is a semisimple Lie algebra and <w1>, <w2> are dominant
## weights. Let $V_i$ be the irreducible highest-weight module over <L>
## with highest weight $w_i$ for $i=1,2$. Let $W=V_1\otimes V_2$. Then in
## general $W$ is a reducible <L>-module. Now this function
## returns a list of two lists. The first of these is the list of highest
## weights of the irreducible modules occurring in the decomposition of
## $W$ as a direct sum of irreducible modules. The second list contains
## the multiplicities of these weights (i.e., the number of copies of
## the irreducible module with the corresponding highest weight that occur
## in $W$). The algorithm uses Klimyk's formula (see~\cite{Klimyk68} or
## \cite{Klimyk66} for the original Russian version).
##
DeclareOperation( "DecomposeTensorProduct", [ IsLieAlgebra, IsList, IsList ] );
#############################################################################
##
#O DimensionOfHighestWeightModule( <L>, <w> )
##
## Here <L> is a semisimple Lie algebra, and <w> a dominant weight.
## This function returns the dimension of the highest-weight module
## over <L> with highest weight <w>. The algorithm
## uses Weyl's dimension formula.
##
DeclareOperation( "DimensionOfHighestWeightModule", [ IsLieAlgebra, IsList ] );
#2
## Let $L$ be a semisimple Lie algebra over a field of characteristic $0$,
## and let $R$ be its root system. For a positive root $\alpha$ we let
## $x_{\alpha}$ and $y_{\alpha}$ be positive and negative root vectors
## respectively, both from a fixed Chevalley basis of $L$. Furthermore,
## $h_1,\ldots, h_l$ are the Cartan elements from the same Chevalley
## basis. Also we set
## $$
## x_{\alpha}^{(n)} = {x_{\alpha}^n \over n!}, \qquad
## y_{\alpha}^{(n)} = {y_{\alpha}^n \over n!}\.
## $$
## Furthermore, let $\alpha_1,\ldots, \alpha_s$ denote the positive roots
## of $R$. For multi-indices $N=(n_1,\ldots, n_s)$, $M=(m_1,\ldots, m_s)$
## and $K=(k_1,\ldots, k_s)$ (where $n_i,m_i,k_i\geq 0$) set
## $$
## \matrix{
## x^N &=& x_{\alpha_1}^{(n_1)}\cdots x_{\alpha_s}^{(n_s)},\cr
## y^M &=& y_{\alpha_1}^{(m_1)}\cdots y_{\alpha_s}^{(m_s)},\cr
## h^K &=& {h_1\choose k_1}\cdots {h_l\choose k_l}\cr
## }
## $$
## Then by a theorem of Kostant, the $x_{\alpha}^{(n)}$ and
## $y_{\alpha}^{(n)}$ generate a subring of the universal enveloping algebra
## $U(L)$ spanned (as a free $Z$-module) by the elements
## $$
## y^Mh^Kx^N
## $$
## (see, e.g., \cite{Hum72} or \cite{Hum78}, Section 26)
## So by the Poincare-Birkhoff-Witt theorem
## this subring is a lattice in $U(L)$. Furthermore, this lattice is
## invariant under the $x_{\alpha}^{(n)}$ and $y_{\alpha}^{(n)}$.
## Therefore, it is called an admissible lattice in $U(L)$.
##
## The next functions enable us to construct the generators of such an
## admissible lattice.
##############################################################################
##
#C IsUEALatticeElement( <obj> )
#C IsUEALatticeElementCollection( <obj> )
#C IsUEALatticeElementFamily( <fam> )
##
## is the category of elements of an admissible lattice in the universal
## enveloping algebra of a semisimple Lie algebra `L'.
##
DeclareCategory( "IsUEALatticeElement", IsVector and IsRingElement and
IsMultiplicativeElementWithOne );
DeclareCategoryCollections( "IsUEALatticeElement" );
DeclareCategoryFamily( "IsUEALatticeElement" );
##############################################################################
##
#A LatticeGeneratorsInUEA( <L> )
##
## Here <L> must be a semisimple Lie algebra of characteristic $0$.
## This function returns a list of generators of an admissible lattice
## in the universal enveloping algebra of <L>, relative to
## the Chevalley basis contained in `ChevalleyBasis( <L> )'.
## First are listed the negative root vectors (denoted by $y_1,\ldots, y_s$),
## then the positive root vectors (denoted by $x_1,\ldots, x_s$). At the
## end of the list there are the Cartan elements. They are printed as
## `( hi/1 )', which means
## $$
## {h_i\choose 1}\.
## $$
## In general the printed form `( hi/ k )' means
## $$
## {h_i\choose k}\.
## $$
##
## Also $y_i^{(m)}$ is printed as `yi^(m)', which means that entering
## `yi^m' at the {\GAP} prompt results in the output `m!*yi^(m)'.
##
## Products of lattice generators are collected using the following order:
## first come the $y_i^{(m_i)}$ (in the same order as the positive roots),
## then
## the ${h_i\choose k_i},$ and then the $x_i^{(n_i)}$ (in the same order as
## the positive roots).
##
DeclareAttribute( "LatticeGeneratorsInUEA", IsLieAlgebra );
##############################################################################
##
#F CollectUEALatticeElement( <noPosR>, <BH>, <f>, <vars>, <Rvecs>, <RT>,
## <posR>, <lst> )
##
DeclareGlobalFunction( "CollectUEALatticeElement" );
##############################################################################
##
#C IsWeightRepElement( <obj> )
#C IsWeightRepElementCollection( <obj> )
#C IsWeightRepElementFamily( <fam> )
##
## Is a category of vectors, that is used to construct elements of
## highest-weight modules (by `HighestWeightModule').
##
## WeightRepElements are represented by a list of the form
## `[ v1, c1, v2, c2, ....]', where the `v<i>' are basis vectors, and
## the `c<i>' coefficients. Furthermore a basis vector `v' is a weight vector.
## It is represented by a list of
## form `[ <k>, <mon>, <wt> ]', where <k> is an integer (the basis vectors
## are numbered from $1$ to $\dim V$, where $V$ is the highest weight
## module), <mon> is an UEALatticeElement (which means that the result of
## applying <mon> to a highest weight vector is `v') and <wt> is the weight
## of <v>. A WeightRepElement is printed as `<mon>*v0', where `v0'
## denotes a fixed highest weight vector.
##
## If <v> is a WeightRepElement, then `ExtRepOfObj( <v> )' returns
## the corresponding list, and if <list> is such a list and <fam> a
## WeightRepElementFamily, then `ObjByExtRep( <list>, <fam> )' returns
## the corresponding WeightRepElement.
##
DeclareCategory( "IsWeightRepElement", IsVector );
DeclareCategoryCollections( "IsWeightRepElement" );
DeclareCategoryFamily( "IsWeightRepElement" );
##############################################################################
##
#C IsBasisOfWeightRepElementSpace( <B> )
##
## A basis that lies in this category is a basis of a space of weight
## rep elements. If a basis <B> lies in this category, then it has the
## record components `<B>!.echelonBasis' (a list of basis vectors of
## the same module as where <B> is a basis of, but in echelon form),
## `<B>!.heads' (if `<B>!.heads[i] = k', then the number of the first
## weight vector of `<B>!.echelonBasis[i]' is `k'; recall that all weight
## vectors carry a number), and `<B>!.baseChange' (if `<B>!.baseChange[i]=
## [ [m1,c1],...,[ms,cs] ]' then the `i'-th element of `<B>!.echelonBasis'
## is of the form $c1 v_{m1}+\cdots +cs v_{ms}$, where the $v_j$ are the
## basis vectors of <B>.
##
DeclareCategory( "IsBasisOfWeightRepElementSpace", IsBasis );
#############################################################################
##
#F HighestWeightModule( <L>, <wt> )
##
## returns the highest weight module with highest weight <wt> of the
## semisimple Lie algebra <L> of characteristic $0$.
##
## Note that the elements of such a module lie in the category
## `IsLeftAlgebraModuleElement' (and in particular they do not lie
## in the category `IsWeightRepElement'). However, if `v' is an element
## of such a module, then `ExtRepOfObj( v )' is a WeightRepElement.
##
DeclareOperation( "HighestWeightModule", [ IsAlgebra, IsList ] );
#############################################################################
##
#F LeadingUEALatticeMonomial( <novar>, <f> )
##
## Here <f> is an `UEALatticeElement', and <novar> the number of generators
## of the algebra containing <f>. This function returns a list of four
## elements. The first element is the leading monomial of <f> (as it
## occurs in the external representation of <f>). The second element is the
## leading monomial of <f> represented as a list of length <novar>. The
## i-th entry in this list is the exponent of the i-th generator in
## the leading monomial. The third and fourth elements are, respectively,
## the coefficient of the leading monomial and the index at which it
## occurs in <f> (so that <f>!.[1][ind] is equal to the first element of
## the output).
##
DeclareOperation( "LeadingUEALatticeMonomial",
[ IsInt, IsUEALatticeElement ] );
##############################################################################
##
#F LeftReduceUEALatticeElement( <novar>, <G>, <lms>, <p> )
##
##
DeclareGlobalFunction( "LeftReduceUEALatticeElement" );
##############################################################################
##
#F ExtendRepresentation( <L>, <newelts>, <I>, <mats> )
##
DeclareGlobalFunction( "ExtendRepresentation" );
#############################################################################
##
#F IsCochainsSpace( <V> )
##
## ...
##
DeclareHandlingByNiceBasis( "IsCochainsSpace",
"for free left modules of cochains" );
#############################################################################
##
#V InfoSearchTable
##
## is the info class for methods and functions applicable to search tables.
## (see~"Info Functions").
##
DeclareInfoClass( "InfoSearchTable" );
#############################################################################
##
#C IsSearchTable( <obj> )
##
## A search table stores elements and provides methods for efficient
## search of particular kinds of elements.
##
DeclareCategory( "IsSearchTable", IsObject );
#############################################################################
##
#O Search( <T>, <key> )
##
## is the operation for finding element labelled with <key> in table <T>.
## The return value depends on the specific implementation of the search
## table, but this will always return `fail' if an element in $T$ does not
## satisfy the necessary criterion for <key>.
##
DeclareOperation( "Search", [ IsSearchTable, IsObject ] );
#############################################################################
##
#O Insert( <T>, <key>, <data> )
##
## is the operation for inserting data into the search table.
## The data <data> is stored in the table under the key <key>.
## The operation returns `true' if the insertion occurs, and
## `false' otherwise.
##
DeclareOperation( "Insert", [ IsSearchTable, IsObject, IsObject ] );
#############################################################################
##
#C IsVectorSearchTable( <obj> )
##
## is a search table encoding integer vectors representing a
## variable/exponent pair for monomials in a commutative polynomial ring
## or in a semisimple Lie algebra given by a PBW basis.
##
DeclareCategory( "IsVectorSearchTable", IsSearchTable );
#############################################################################
##
#F VectorSearchTable( )
#F VectorSearchTable( <keys>, <data> )
##
## construct an empty search table or a search table containing <data>
## keyed by <keys>. The list <keys> must contain integer lists which are
## interpreted as exponents for variables.
##
## The lists <keys> and <data> must be the same length as well.
##
DeclareGlobalFunction( "VectorSearchTable" );
#############################################################################
##
#E
|