File: module.gd

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (435 lines) | stat: -rw-r--r-- 14,711 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#############################################################################
##
#W  module.gd                   GAP library                     Thomas Breuer
##
#H  @(#)$Id: module.gd,v 4.45 2002/04/15 10:05:03 sal Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for left modules, right modules,
##  and bimodules.
##
Revision.module_gd :=
    "@(#)$Id: module.gd,v 4.45 2002/04/15 10:05:03 sal Exp $";


#############################################################################
##
#C  IsLeftOperatorAdditiveGroup( <D> )
##
##  A domain <D> lies in `IsLeftOperatorAdditiveGroup' if it is an additive
##  group that is closed under scalar multplication from the
##  left, and such that $\lambda*(x+y)=\lambda*x+\lambda*y$ for all
##  scalars $\lambda$ and elements $x,y\in D$.
##
DeclareSynonym( "IsLeftOperatorAdditiveGroup",
        IsAdditiveGroup
    and IsExtLSet
    and IsDistributiveLOpDSum );


#############################################################################
##
#C  IsLeftModule( <M> )
##
##  A domain <M> lies in `IsLeftModule' if it lies in
##  `IsLeftOperatorAdditiveGroup', {\it and} the set of scalars forms a ring,
##  {\it and} $(\lambda+\mu)*x=\lambda*x+\mu*x$ for scalars $\lambda,\mu$
##  and $x\in M$, {\it and} scalar multiplication satisfies $\lambda*(\mu*x)=
##  (\lambda*\mu)*x$ for scalars $\lambda,\mu$ and $x\in M$.
##
DeclareSynonym( "IsLeftModule",
        IsLeftOperatorAdditiveGroup
    and IsLeftActedOnByRing
    and IsDistributiveLOpESum
    and IsAssociativeLOpEProd
    and IsTrivialLOpEOne );


#############################################################################
##
#C  IsRightOperatorAdditiveGroup( <D> )
##
##  A domain <D> lies in `IsRightOperatorAdditiveGroup' if it is an additive
##  group that is closed under scalar multplication from the
##  right, and such that $(x+y)*\lambda=x*\lambda+y*\lambda$ for all
##  scalars $\lambda$ and elements $x,y\in D$.
##
DeclareSynonym( "IsRightOperatorAdditiveGroup",
        IsAdditiveGroup
    and IsExtRSet
    and IsDistributiveROpDSum );


#############################################################################
##
#C  IsRightModule( <M> )
##
##  A domain <M> lies in `IsRightModule' if it lies in
##  `IsRightOperatorAdditiveGroup', {\it and} the set of scalars forms a ring,
##  {\it and} $x*(\lambda+\mu) = x*\lambda+x*\mu$ for scalars $\lambda,\mu$
##  and $x\in M$, {\it and} scalar multiplication satisfies $(x*\mu)*\lambda=
##  x*(\mu*\lambda)$ for scalars $\lambda,\mu$ and $x\in M$.
##
DeclareSynonym( "IsRightModule",
        IsRightOperatorAdditiveGroup
    and IsRightActedOnByRing
    and IsDistributiveROpESum
    and IsAssociativeROpEProd
    and IsTrivialROpEOne );


#############################################################################
##
#C  IsFreeLeftModule( <M> )
##
##  A left module is free as module if it is isomorphic to a direct sum of
##  copies of its left acting domain.
##
##  Free left modules can have bases.
##
##  The characteristic (see~"Characteristic") of a free left module
##  is defined as the characteristic of its left acting domain
##  (see~"LeftActingDomain").
##
DeclareCategory( "IsFreeLeftModule", IsLeftModule );


#############################################################################
##
#P  IsFiniteDimensional( <M> )
##
##  is `true' if <M> is a free left module that is finite dimensional
##  over its left acting domain, and `false' otherwise.
##
DeclareProperty( "IsFiniteDimensional", IsFreeLeftModule );

InstallSubsetMaintenance( IsFiniteDimensional,
    IsFreeLeftModule and IsFiniteDimensional, IsFreeLeftModule );

InstallFactorMaintenance( IsFiniteDimensional,
    IsFreeLeftModule and IsFiniteDimensional,
    IsObject, IsFreeLeftModule );

InstallTrueMethod( IsFiniteDimensional, IsFreeLeftModule and IsFinite );


#############################################################################
##
#P  IsFullRowModule( <M> )
##
##  A *full row module* is a module $R^n$,
##  for a ring $R$ and a nonnegative integer $n$.
##
##  More precisely, a full row module is a free left module over a ring $R$
##  such that the elements are row vectors with entries in $R$ and such that
##  the dimension is equal to the length of the row vectors.
##
##  Several functions delegate their tasks to full row modules,
##  for example `Iterator' and `Enumerator'.
##
DeclareProperty( "IsFullRowModule", IsFreeLeftModule, 20 );


#############################################################################
##
#P  IsFullMatrixModule( <M> )
##
##  A *full matrix module* is a module $R^{[m,n]}$,
##  for a ring $R$ and two nonnegative integers $m$, $n$.
##
##  More precisely, a full matrix module is a free left module over a ring
##  $R$ such that the elements are matrices with entries in $R$
##  and such that the dimension is equal to the number of entries in each
##  matrix.
##
DeclareProperty( "IsFullMatrixModule", IsFreeLeftModule, 20 );


#############################################################################
##
#C  IsHandledByNiceBasis( <M> )
##
##  For a free left module <M> in this category, essentially all operations
##  are performed using a ``nicer'' free left module,
##  which is usually a row module.
##
DeclareCategory( "IsHandledByNiceBasis",
    IsFreeLeftModule and IsAttributeStoringRep );
#T individually choose for each repres. in this category?
#T why not `DeclareFilter' ?


#############################################################################
##
#A  Dimension( <M> )
##
##  A free left module has dimension $n$ if it is isomorphic to a direct sum
##  of $n$ copies of its left acting domain.
##
##  (We do *not* mark `Dimension' as invariant under isomorphisms
##  since we want to call `UseIsomorphismRelation' also for free left modules
##  over different left acting domains.)
##
DeclareAttribute( "Dimension", IsFreeLeftModule );


############################################################################
##
#A  GeneratorsOfLeftOperatorAdditiveGroup( <D> )
##
##  returns a list of elements of <D> that generates <D> as a left operator
##  additive group.
##
DeclareAttribute( "GeneratorsOfLeftOperatorAdditiveGroup",
    IsLeftOperatorAdditiveGroup );


############################################################################
##
#A  GeneratorsOfLeftModule( <M> )
##
##  returns a list of elements of <M> that generate <M> as a left module.
##
DeclareSynonymAttr( "GeneratorsOfLeftModule",
    GeneratorsOfLeftOperatorAdditiveGroup );


#############################################################################
##
#A  GeneratorsOfRightOperatorAdditiveGroup( <D> )
##
##  returns a list of elements of <D> that generates <D> as a right operator
##  additive group.
##
DeclareAttribute( "GeneratorsOfRightOperatorAdditiveGroup",
    IsRightOperatorAdditiveGroup );


#############################################################################
##
#A  GeneratorsOfRightModule( <M> )
##
##  returns a list of elements of <M> that generate <M> as a left module.
##
DeclareSynonymAttr( "GeneratorsOfRightModule",
    GeneratorsOfRightOperatorAdditiveGroup );


#############################################################################
##
#A  TrivialSubmodule( <M> )
##
##  returns the zero submodule of <M>.
##
DeclareSynonymAttr( "TrivialSubmodule", TrivialSubadditiveMagmaWithZero );


#############################################################################
##
#O  AsLeftModule( <R>, <D> )
##
##  if the domain <D> forms an additive group and is closed under left
##  multiplication by the elements of <R>, then `AsLeftModule( <R>, <D> )'
##  returns the domain <D> viewed as a left module.
##
DeclareOperation( "AsLeftModule", [ IsRing, IsCollection ] );


#############################################################################
##
#O  AsFreeLeftModule( <F>, <D> )  . . . . .  view <D> as free left <F>-module
##
##  if the domain <D> is a free left module over <F>, then
##  `AsFreeLeftModule( <F>, <D> )' returns the domain <D> viewed as free
##   left module over <F>.
##
DeclareOperation( "AsFreeLeftModule", [ IsRing, IsCollection ] );


#############################################################################
##
#O  ClosureLeftModule( <M>, <m> )
##
##  is the left module generated by the left module generators of <M> and the
##  element <m>.
##
DeclareOperation( "ClosureLeftModule", [ IsLeftModule, IsVector ] );


#############################################################################
##
#O  LeftModuleByGenerators( <R>, <gens> ) .  left <R>-module gener. by <gens>
#O  LeftModuleByGenerators( <R>, <gens>, <zero> )
##
##  returns the left module over <R> generated by <gens>.
##
DeclareOperation( "LeftModuleByGenerators", [ IsRing, IsCollection ] );
DeclareOperation( "LeftModuleByGenerators",
    [ IsRing, IsListOrCollection, IsObject ] );


#############################################################################
##
#O  UseBasis( <V>, <gens> )
##
##  The vectors in the list <gens> are known to form a basis of the
##  free left module <V>.
##  `UseBasis' stores information in <V> that can be derived form this fact,
##  namely
##  \beginlist%unordered
##  \item{--}
##    <gens> are stored as left module generators if no such generators were
##    bound (this is useful especially if <V> is an algebra),
##  \item{--}
##    the dimension of <V> is stored.
##  \endlist
##
DeclareOperation( "UseBasis", [ IsFreeLeftModule, IsHomogeneousList ] );


#############################################################################
##
#F  FreeLeftModule( <R>, <gens> )
#F  FreeLeftModule( <R>, <gens>, <zero> )
#F  FreeLeftModule( <R>, <gens>, "basis" )
#F  FreeLeftModule( <R>, <gens>, <zero>, "basis" )
##
##  `FreeLeftModule( <R>, <gens> )' is the free left module over the ring
##  <R>, generated by the vectors in the collection <gens>.
##
##  If there are three arguments, a ring <R> and a collection <gens>
##  and an element <zero>,
##  then `FreeLeftModule( <R>, <gens>, <zero> )' is the <R>-free left module
##  generated by <gens>, with zero element <zero>.
##
##  If the last argument is the string `"basis"' then the vectors in
##  <gens> are known to form a basis of the free module.
##
##  It should be noted that the generators <gens> must be vectors,
##  that is, they must support an addition and a scalar action of <R>
##  via left multiplication.
##  (See also Section~"Constructing Domains" for the general meaning of
##  ``generators'' in {\GAP}.)
##  In particular, `FreeLeftModule' is *not* an equivalent of commands
##  such as `FreeGroup' (see~"FreeGroup") in the sense of a constructor of
##  a free group on abstract generators;
##  Such a construction seems to be unnecessary for vector spaces,
##  for that one can use for example row spaces (see~"FullRowSpace")
##  in the finite dimensional case
##  and polynomial rings (see~"PolynomialRing") in the infinite dimensional
##  case.
##  Moreover, the definition of a ``natural'' addition for elements of a
##  given magma (for example a permutation group) is possible via the
##  construction of magma rings (see Chapter "ref:Magma Rings").
##
DeclareGlobalFunction( "FreeLeftModule" );


#############################################################################
##
#F  FullRowModule( <R>, <n> )
##
##  is the row module `<R>^<n>',
##  for a ring <R> and a nonnegative integer <n>.
##
DeclareGlobalFunction( "FullRowModule" );


#############################################################################
##
#F  FullMatrixModule( <R>, <m>, <n> )
##
##  is the row module `<R>^[<m>,<n>]',
##  for a ring <R> and nonnegative integers <m> and <n>.
##
DeclareGlobalFunction( "FullMatrixModule" );


#############################################################################
##
#F  StandardGeneratorsOfFullMatrixModule( <M> )
##
DeclareGlobalFunction( "StandardGeneratorsOfFullMatrixModule" );


#############################################################################
##
#F  Submodule( <M>, <gens> )  . . . . .  submodule of <M> generated by <gens>
#F  Submodule( <M>, <gens>, "basis" )
##
##  is the left module generated by the collection <gens>,
##  with parent module <M>.
##  The second form generates the submodule of <M> for that the list <gens>
##  is known to be a list of basis vectors;
##  in this case, it is *not* checked whether <gens> really are linearly
##  independent and whether all in <gens> lie in <M>.
##
DeclareGlobalFunction( "Submodule" );


#############################################################################
##
#F  SubmoduleNC( <M>, <gens> )
#F  SubmoduleNC( <M>, <gens>, "basis" )
##
##  `SubmoduleNC' does the same as `Submodule', except that it does not check
##  whether all in <gens> lie in <M>.
##
DeclareGlobalFunction( "SubmoduleNC" );


#############################################################################
##
#P  IsRowModule( <V> )
##
##  A *row module* is a free left module whose elements are row vectors.
##
DeclareProperty( "IsRowModule", IsFreeLeftModule );

InstallTrueMethod( IsRowModule, IsFullRowModule );


#############################################################################
##
#P  IsMatrixModule( <V> )
##
##  A *matrix module* is a free left module whose elements are matrices.
##
DeclareProperty( "IsMatrixModule", IsFreeLeftModule );

InstallTrueMethod( IsMatrixModule, IsFullMatrixModule );


#############################################################################
##
#A  DimensionOfVectors( <M> ) . . . . . . . . . .  for row and matrix modules
##
##  For a left module <M> that consists of row vectors (see~"IsRowModule"),
##  `DimensionOfVectors' returns the common length of all row vectors in <M>.
##  For a left module <M> that consists of matrices (see~"IsMatrixModule"),
##  `DimensionOfVectors' returns the common matrix dimensions
##  (see~"DimensionsMat") of all matrices in <M>.
##
DeclareAttribute( "DimensionOfVectors", IsFreeLeftModule );


#############################################################################
##
#M  IsFiniteDimensional( <M> )  . . . . . .  row modules are always fin. dim.
#M  IsFiniteDimensional( <M> )  . . . . . matrix modules are always fin. dim.
##
##  Any free left module in the filter `IsRowModule' or `IsMatrixModule'
##  is finite dimensional.
##
InstallTrueMethod( IsFiniteDimensional, IsRowModule and IsFreeLeftModule );
InstallTrueMethod( IsFiniteDimensional,
    IsMatrixModule and IsFreeLeftModule );


#############################################################################
##
#E