1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
#############################################################################
##
#W module.gd GAP library Thomas Breuer
##
#H @(#)$Id: module.gd,v 4.45 2002/04/15 10:05:03 sal Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for left modules, right modules,
## and bimodules.
##
Revision.module_gd :=
"@(#)$Id: module.gd,v 4.45 2002/04/15 10:05:03 sal Exp $";
#############################################################################
##
#C IsLeftOperatorAdditiveGroup( <D> )
##
## A domain <D> lies in `IsLeftOperatorAdditiveGroup' if it is an additive
## group that is closed under scalar multplication from the
## left, and such that $\lambda*(x+y)=\lambda*x+\lambda*y$ for all
## scalars $\lambda$ and elements $x,y\in D$.
##
DeclareSynonym( "IsLeftOperatorAdditiveGroup",
IsAdditiveGroup
and IsExtLSet
and IsDistributiveLOpDSum );
#############################################################################
##
#C IsLeftModule( <M> )
##
## A domain <M> lies in `IsLeftModule' if it lies in
## `IsLeftOperatorAdditiveGroup', {\it and} the set of scalars forms a ring,
## {\it and} $(\lambda+\mu)*x=\lambda*x+\mu*x$ for scalars $\lambda,\mu$
## and $x\in M$, {\it and} scalar multiplication satisfies $\lambda*(\mu*x)=
## (\lambda*\mu)*x$ for scalars $\lambda,\mu$ and $x\in M$.
##
DeclareSynonym( "IsLeftModule",
IsLeftOperatorAdditiveGroup
and IsLeftActedOnByRing
and IsDistributiveLOpESum
and IsAssociativeLOpEProd
and IsTrivialLOpEOne );
#############################################################################
##
#C IsRightOperatorAdditiveGroup( <D> )
##
## A domain <D> lies in `IsRightOperatorAdditiveGroup' if it is an additive
## group that is closed under scalar multplication from the
## right, and such that $(x+y)*\lambda=x*\lambda+y*\lambda$ for all
## scalars $\lambda$ and elements $x,y\in D$.
##
DeclareSynonym( "IsRightOperatorAdditiveGroup",
IsAdditiveGroup
and IsExtRSet
and IsDistributiveROpDSum );
#############################################################################
##
#C IsRightModule( <M> )
##
## A domain <M> lies in `IsRightModule' if it lies in
## `IsRightOperatorAdditiveGroup', {\it and} the set of scalars forms a ring,
## {\it and} $x*(\lambda+\mu) = x*\lambda+x*\mu$ for scalars $\lambda,\mu$
## and $x\in M$, {\it and} scalar multiplication satisfies $(x*\mu)*\lambda=
## x*(\mu*\lambda)$ for scalars $\lambda,\mu$ and $x\in M$.
##
DeclareSynonym( "IsRightModule",
IsRightOperatorAdditiveGroup
and IsRightActedOnByRing
and IsDistributiveROpESum
and IsAssociativeROpEProd
and IsTrivialROpEOne );
#############################################################################
##
#C IsFreeLeftModule( <M> )
##
## A left module is free as module if it is isomorphic to a direct sum of
## copies of its left acting domain.
##
## Free left modules can have bases.
##
## The characteristic (see~"Characteristic") of a free left module
## is defined as the characteristic of its left acting domain
## (see~"LeftActingDomain").
##
DeclareCategory( "IsFreeLeftModule", IsLeftModule );
#############################################################################
##
#P IsFiniteDimensional( <M> )
##
## is `true' if <M> is a free left module that is finite dimensional
## over its left acting domain, and `false' otherwise.
##
DeclareProperty( "IsFiniteDimensional", IsFreeLeftModule );
InstallSubsetMaintenance( IsFiniteDimensional,
IsFreeLeftModule and IsFiniteDimensional, IsFreeLeftModule );
InstallFactorMaintenance( IsFiniteDimensional,
IsFreeLeftModule and IsFiniteDimensional,
IsObject, IsFreeLeftModule );
InstallTrueMethod( IsFiniteDimensional, IsFreeLeftModule and IsFinite );
#############################################################################
##
#P IsFullRowModule( <M> )
##
## A *full row module* is a module $R^n$,
## for a ring $R$ and a nonnegative integer $n$.
##
## More precisely, a full row module is a free left module over a ring $R$
## such that the elements are row vectors with entries in $R$ and such that
## the dimension is equal to the length of the row vectors.
##
## Several functions delegate their tasks to full row modules,
## for example `Iterator' and `Enumerator'.
##
DeclareProperty( "IsFullRowModule", IsFreeLeftModule, 20 );
#############################################################################
##
#P IsFullMatrixModule( <M> )
##
## A *full matrix module* is a module $R^{[m,n]}$,
## for a ring $R$ and two nonnegative integers $m$, $n$.
##
## More precisely, a full matrix module is a free left module over a ring
## $R$ such that the elements are matrices with entries in $R$
## and such that the dimension is equal to the number of entries in each
## matrix.
##
DeclareProperty( "IsFullMatrixModule", IsFreeLeftModule, 20 );
#############################################################################
##
#C IsHandledByNiceBasis( <M> )
##
## For a free left module <M> in this category, essentially all operations
## are performed using a ``nicer'' free left module,
## which is usually a row module.
##
DeclareCategory( "IsHandledByNiceBasis",
IsFreeLeftModule and IsAttributeStoringRep );
#T individually choose for each repres. in this category?
#T why not `DeclareFilter' ?
#############################################################################
##
#A Dimension( <M> )
##
## A free left module has dimension $n$ if it is isomorphic to a direct sum
## of $n$ copies of its left acting domain.
##
## (We do *not* mark `Dimension' as invariant under isomorphisms
## since we want to call `UseIsomorphismRelation' also for free left modules
## over different left acting domains.)
##
DeclareAttribute( "Dimension", IsFreeLeftModule );
############################################################################
##
#A GeneratorsOfLeftOperatorAdditiveGroup( <D> )
##
## returns a list of elements of <D> that generates <D> as a left operator
## additive group.
##
DeclareAttribute( "GeneratorsOfLeftOperatorAdditiveGroup",
IsLeftOperatorAdditiveGroup );
############################################################################
##
#A GeneratorsOfLeftModule( <M> )
##
## returns a list of elements of <M> that generate <M> as a left module.
##
DeclareSynonymAttr( "GeneratorsOfLeftModule",
GeneratorsOfLeftOperatorAdditiveGroup );
#############################################################################
##
#A GeneratorsOfRightOperatorAdditiveGroup( <D> )
##
## returns a list of elements of <D> that generates <D> as a right operator
## additive group.
##
DeclareAttribute( "GeneratorsOfRightOperatorAdditiveGroup",
IsRightOperatorAdditiveGroup );
#############################################################################
##
#A GeneratorsOfRightModule( <M> )
##
## returns a list of elements of <M> that generate <M> as a left module.
##
DeclareSynonymAttr( "GeneratorsOfRightModule",
GeneratorsOfRightOperatorAdditiveGroup );
#############################################################################
##
#A TrivialSubmodule( <M> )
##
## returns the zero submodule of <M>.
##
DeclareSynonymAttr( "TrivialSubmodule", TrivialSubadditiveMagmaWithZero );
#############################################################################
##
#O AsLeftModule( <R>, <D> )
##
## if the domain <D> forms an additive group and is closed under left
## multiplication by the elements of <R>, then `AsLeftModule( <R>, <D> )'
## returns the domain <D> viewed as a left module.
##
DeclareOperation( "AsLeftModule", [ IsRing, IsCollection ] );
#############################################################################
##
#O AsFreeLeftModule( <F>, <D> ) . . . . . view <D> as free left <F>-module
##
## if the domain <D> is a free left module over <F>, then
## `AsFreeLeftModule( <F>, <D> )' returns the domain <D> viewed as free
## left module over <F>.
##
DeclareOperation( "AsFreeLeftModule", [ IsRing, IsCollection ] );
#############################################################################
##
#O ClosureLeftModule( <M>, <m> )
##
## is the left module generated by the left module generators of <M> and the
## element <m>.
##
DeclareOperation( "ClosureLeftModule", [ IsLeftModule, IsVector ] );
#############################################################################
##
#O LeftModuleByGenerators( <R>, <gens> ) . left <R>-module gener. by <gens>
#O LeftModuleByGenerators( <R>, <gens>, <zero> )
##
## returns the left module over <R> generated by <gens>.
##
DeclareOperation( "LeftModuleByGenerators", [ IsRing, IsCollection ] );
DeclareOperation( "LeftModuleByGenerators",
[ IsRing, IsListOrCollection, IsObject ] );
#############################################################################
##
#O UseBasis( <V>, <gens> )
##
## The vectors in the list <gens> are known to form a basis of the
## free left module <V>.
## `UseBasis' stores information in <V> that can be derived form this fact,
## namely
## \beginlist%unordered
## \item{--}
## <gens> are stored as left module generators if no such generators were
## bound (this is useful especially if <V> is an algebra),
## \item{--}
## the dimension of <V> is stored.
## \endlist
##
DeclareOperation( "UseBasis", [ IsFreeLeftModule, IsHomogeneousList ] );
#############################################################################
##
#F FreeLeftModule( <R>, <gens> )
#F FreeLeftModule( <R>, <gens>, <zero> )
#F FreeLeftModule( <R>, <gens>, "basis" )
#F FreeLeftModule( <R>, <gens>, <zero>, "basis" )
##
## `FreeLeftModule( <R>, <gens> )' is the free left module over the ring
## <R>, generated by the vectors in the collection <gens>.
##
## If there are three arguments, a ring <R> and a collection <gens>
## and an element <zero>,
## then `FreeLeftModule( <R>, <gens>, <zero> )' is the <R>-free left module
## generated by <gens>, with zero element <zero>.
##
## If the last argument is the string `"basis"' then the vectors in
## <gens> are known to form a basis of the free module.
##
## It should be noted that the generators <gens> must be vectors,
## that is, they must support an addition and a scalar action of <R>
## via left multiplication.
## (See also Section~"Constructing Domains" for the general meaning of
## ``generators'' in {\GAP}.)
## In particular, `FreeLeftModule' is *not* an equivalent of commands
## such as `FreeGroup' (see~"FreeGroup") in the sense of a constructor of
## a free group on abstract generators;
## Such a construction seems to be unnecessary for vector spaces,
## for that one can use for example row spaces (see~"FullRowSpace")
## in the finite dimensional case
## and polynomial rings (see~"PolynomialRing") in the infinite dimensional
## case.
## Moreover, the definition of a ``natural'' addition for elements of a
## given magma (for example a permutation group) is possible via the
## construction of magma rings (see Chapter "ref:Magma Rings").
##
DeclareGlobalFunction( "FreeLeftModule" );
#############################################################################
##
#F FullRowModule( <R>, <n> )
##
## is the row module `<R>^<n>',
## for a ring <R> and a nonnegative integer <n>.
##
DeclareGlobalFunction( "FullRowModule" );
#############################################################################
##
#F FullMatrixModule( <R>, <m>, <n> )
##
## is the row module `<R>^[<m>,<n>]',
## for a ring <R> and nonnegative integers <m> and <n>.
##
DeclareGlobalFunction( "FullMatrixModule" );
#############################################################################
##
#F StandardGeneratorsOfFullMatrixModule( <M> )
##
DeclareGlobalFunction( "StandardGeneratorsOfFullMatrixModule" );
#############################################################################
##
#F Submodule( <M>, <gens> ) . . . . . submodule of <M> generated by <gens>
#F Submodule( <M>, <gens>, "basis" )
##
## is the left module generated by the collection <gens>,
## with parent module <M>.
## The second form generates the submodule of <M> for that the list <gens>
## is known to be a list of basis vectors;
## in this case, it is *not* checked whether <gens> really are linearly
## independent and whether all in <gens> lie in <M>.
##
DeclareGlobalFunction( "Submodule" );
#############################################################################
##
#F SubmoduleNC( <M>, <gens> )
#F SubmoduleNC( <M>, <gens>, "basis" )
##
## `SubmoduleNC' does the same as `Submodule', except that it does not check
## whether all in <gens> lie in <M>.
##
DeclareGlobalFunction( "SubmoduleNC" );
#############################################################################
##
#P IsRowModule( <V> )
##
## A *row module* is a free left module whose elements are row vectors.
##
DeclareProperty( "IsRowModule", IsFreeLeftModule );
InstallTrueMethod( IsRowModule, IsFullRowModule );
#############################################################################
##
#P IsMatrixModule( <V> )
##
## A *matrix module* is a free left module whose elements are matrices.
##
DeclareProperty( "IsMatrixModule", IsFreeLeftModule );
InstallTrueMethod( IsMatrixModule, IsFullMatrixModule );
#############################################################################
##
#A DimensionOfVectors( <M> ) . . . . . . . . . . for row and matrix modules
##
## For a left module <M> that consists of row vectors (see~"IsRowModule"),
## `DimensionOfVectors' returns the common length of all row vectors in <M>.
## For a left module <M> that consists of matrices (see~"IsMatrixModule"),
## `DimensionOfVectors' returns the common matrix dimensions
## (see~"DimensionsMat") of all matrices in <M>.
##
DeclareAttribute( "DimensionOfVectors", IsFreeLeftModule );
#############################################################################
##
#M IsFiniteDimensional( <M> ) . . . . . . row modules are always fin. dim.
#M IsFiniteDimensional( <M> ) . . . . . matrix modules are always fin. dim.
##
## Any free left module in the filter `IsRowModule' or `IsMatrixModule'
## is finite dimensional.
##
InstallTrueMethod( IsFiniteDimensional, IsRowModule and IsFreeLeftModule );
InstallTrueMethod( IsFiniteDimensional,
IsMatrixModule and IsFreeLeftModule );
#############################################################################
##
#E
|