1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#############################################################################
##
#W monoid.gd GAP library Thomas Breuer
##
#H @(#)$Id: monoid.gd,v 4.20 2002/04/15 10:05:04 sal Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of operations for monoids.
##
Revision.monoid_gd :=
"@(#)$Id: monoid.gd,v 4.20 2002/04/15 10:05:04 sal Exp $";
#############################################################################
##
#P IsMonoid( <D> )
##
## A *monoid* is a magma-with-one (see~"Magmas") with associative
## multiplication.
##
DeclareSynonymAttr( "IsMonoid", IsMagmaWithOne and IsAssociative );
#############################################################################
##
#F Monoid( <gen1>, <gen2> ... )
#F Monoid( <gens> )
#F Monoid( <gens>, <id> )
##
## In the first form, `Monoid' returns the monoid generated by the
## arguments <gen1>, <gen2> ...,
## that is, the closure of these elements under multiplication and taking
## the 0-th power.
## In the second form, `Monoid' returns the monoid generated by the
## elements in the homogeneous list <gens>;
## a square matrix as only argument is treated as one generator,
## not as a list of generators.
## In the third form, `Monoid' returns the monoid generated by the
## elements in the homogeneous list <gens>, with identity <id>.
##
## It is *not* checked whether the underlying multiplication is associative,
## use `MagmaWithOne' (see~"MagmaWithOne") and `IsAssociative'
## (see~"IsAssociative")
## if you want to check whether a magma-with-one is in fact a monoid.
##
DeclareGlobalFunction( "Monoid" );
#############################################################################
##
#F Submonoid( <M>, <gens> ) . . . . . . submonoid of <M> generated by <gens>
#F SubmonoidNC( <M>, <gens> )
##
## are just synonyms of `SubmagmaWithOne' and `SubmagmaWithOneNC',
## respectively (see~"SubmagmaWithOne").
##
DeclareSynonym( "Submonoid", SubmagmaWithOne );
DeclareSynonym( "SubmonoidNC", SubmagmaWithOneNC );
#############################################################################
##
#O MonoidByGenerators( <gens> ) . . . . . . . . . monoid generated by <gens>
#O MonoidByGenerators( <gens>, <one> )
##
## is the underlying operation of `Monoid' (see~"Monoid").
##
DeclareOperation( "MonoidByGenerators", [ IsCollection ] );
#############################################################################
##
#A AsMonoid( <C> ) . . . . . . . . . . . . collection <C> regarded as monoid
##
## If <C> is a collection whose elements form a monoid
## (see~"IsMonoid") then `AsMonoid' returns this monoid.
## Otherwise `fail' is returned.
##
DeclareAttribute( "AsMonoid", IsCollection );
#############################################################################
##
#O AsSubmonoid( <D>, <C> )
##
## Let <D> be a domain and <C> a collection.
## If <C> is a subset of <D> that forms a monoid then `AsSubmonoid'
## returns this monoid, with parent <D>.
## Otherwise `fail' is returned.
##
DeclareOperation( "AsSubmonoid", [ IsDomain, IsCollection ] );
#############################################################################
##
#A GeneratorsOfMonoid( <M> ) . . . . . . . monoid generators of monoid <M>
##
## Monoid generators of a monoid <M> are the same as
## magma-with-one generators (see~"GeneratorsOfMagmaWithOne").
##
DeclareSynonymAttr( "GeneratorsOfMonoid", GeneratorsOfMagmaWithOne );
#############################################################################
##
#A TrivialSubmonoid( <M> ) . . . . . . . . . trivial submonoid of monoid <M>
##
## is just a synonym for `TrivialSubmagmaWithOne'
## (see~"TrivialSubmagmaWithOne").
##
DeclareSynonymAttr( "TrivialSubmonoid", TrivialSubmagmaWithOne );
#############################################################################
##
#F FreeMonoid( [<wfilt>,]<rank> )
#F FreeMonoid( [<wfilt>,]<rank>, <name> )
#F FreeMonoid( [<wfilt>,]<name1>, <name2>, ... )
#F FreeMonoid( [<wfilt>,]<names> )
#F FreeMonoid( [<wfilt>,]infinity, <name>, <init> )
##
## Called in the first form, `FreeMonoid' returns a free monoid on
## <rank> generators.
## Called in the second form, `FreeMonoid' returns a free monoid on
## <rank> generators, printed as `<name>1', `<name>2' etc.,
## that is, each name is the concatenation of the string <name> and an
## integer from `1' to <range>.
## Called in the third form, `FreeMonoid' returns a free monoid on
## as many generators as arguments, printed as <name1>, <name2> etc.
## Called in the fourth form, `FreeMonoid' returns a free monoid on
## as many generators as the length of the list <names>, the $i$-th
## generator being printed as `<names>[$i$]'.
## Called in the fifth form, `FreeMonoid' returns a free monoid on
## infinitely many generators, where the first generators are printed
## by the names in the list <init>, and the other generators by <name>
## and an appended number.
##
## If the extra argument <wfilt> is given, it must be either
## `IsSyllableWordsFamily' or `IsLetterWordsFamily' or
## `IsWLetterWordsFamily' or `IsBLetterWordsFamily'. The filter then
## specifies the representation used for the elements of the free group
## (see~"Representations for Associative Words"). If no such filter is
## given, a letter representation is used.
##
DeclareGlobalFunction( "FreeMonoid" );
#############################################################################
##
#E
|