1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
#############################################################################
##
#W relation.gd GAP library Andrew Solomon
##
#H @(#)$Id: relation.gd,v 4.35 2002/04/15 10:05:14 sal Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for binary relations on sets.
##
## Maintenance and further development by:
## Robert Arthur
## Robert F. Morse
## Andrew Solomon
##
Revision.relation_gd :=
"@(#)$Id: relation.gd,v 4.35 2002/04/15 10:05:14 sal Exp $";
#############################################################################
#1
## \index{binary relation}
## \atindex{IsBinaryRelation!same as IsEndoGeneralMapping}%
## {@\noexpand`IsBinaryRelation'!same as \noexpand`IsEndoGeneralMapping'}
## \atindex{IsEndoGeneralMapping!same as IsBinaryRelation}%
## {@\noexpand`IsEndoGeneralMapping'!same as \noexpand`IsBinaryRelation'}
## A *binary relation* <R> on a set <X> is a subset of $X \times X$.
## A binary relation can also be thought of as a (general) mapping
## from <X> to itself or as a directed graph where each edge
## represents a tuple of <R>.
##
## In {\GAP}, a relation is conceptually represented as a general mapping
## from <X> to itself. The category `IsBinaryRelation' is the same as the
## category `IsEndoGeneralMapping' (see~"IsEndoGeneralMapping"). Attributes
## and properties of relations in {\GAP} are supported for relations, via
## considering relations as a subset of $X\times X$, or as a directed graph;
## examples include finding the strongly connected components of a relation,
## via `StronglyConnectedComponents' (see~"StronglyConnectedComponents"), or
## enumerating the tuples of the relation.
##
## The hierarchy of concepts around binary relations on a set are:
##
## IsGeneralMapping >
##
## IsEndoGeneralMapping [ = IsBinaryRelation] >
##
## [IsEquivalenceRelation]
##
##
#############################################################################
#############################################################################
##
## General Binary Relations
##
#############################################################################
#############################################################################
##
#C IsBinaryRelation( <R> )
##
## is exactly the same category as (i.e. a synonym for)
## `IsEndoGeneralMapping' (see~"IsEndoGeneralMapping").
##
DeclareSynonym("IsBinaryRelation",IsEndoGeneralMapping);
#############################################################################
##
#F BinaryRelationOnPoints( <list> )
#F BinaryRelationOnPointsNC( <list> )
##
## Given a list of <n> lists, each containing elements from
## the set $\{1,\dots,n\}$,
## this function constructs a binary relation such that $1$ is related
## to <list>`[1]', $2$ to <list>`[2]' and so on.
## The first version checks whether the list supplied is valid. The
## the `NC' version skips this check.
##
DeclareGlobalFunction("BinaryRelationOnPoints");
DeclareGlobalFunction("BinaryRelationOnPointsNC");
#############################################################################
##
#F RandomBinaryRelationOnPoints( <degree> )
##
## creates a relation on points with degree <degree>.
##
DeclareGlobalFunction("RandomBinaryRelationOnPoints");
#############################################################################
##
#F IdentityBinaryRelation( <degree> )
#F IdentityBinaryRelation( <domain> )
##
## is the binary relation which consists of diagonal tuples i.e. tuples of
## the form $(x,x)$. In the first form if a positive integer <degree> is
## given then the domain is the integers $\{1,\dots,<degree>\}$. In the
## second form, the tuples are from the domain <domain>.
##
DeclareGlobalFunction("IdentityBinaryRelation");
#############################################################################
##
#F BinaryRelationByElements(<domain>,<elms>)
##
## is the binary relation on <domain> and with underlying relation
## consisting of the tuples collection <elms>. This construction is similar
## to `GeneralMappingByElements' (see~"GeneralMappingByElements") where the
## source and range are the same set.
##
DeclareGlobalFunction("BinaryRelationByElements");
#############################################################################
##
#F EmptyBinaryRelation( <degree> )
#F EmptyBinaryRelation( <domain> )
##
## is the relation with <R> empty. In the first form of the command with
## <degree> an integer, the domain is the points $\{1,\dots, <degree>\}$. In
## the second form, the domain is that given by the argument <domain>.
##
DeclareGlobalFunction("EmptyBinaryRelation");
#############################################################################
##
#F AsBinaryRelationOnPoints( <trans> )
#F AsBinaryRelationOnPoints( <perm> )
#F AsBinaryRelationOnPoints( <rel> )
##
## return the relation on points represented by general relation <rel>,
## transformation <trans> or permutation <perm>. If <rel> is already a
## binary relation on points then <rel> is returned.
##
## Transformations and permutations are special general endomorphic
## mappings and have a natural representation as a binary relation on
## points.
##
## In the last form, an isomorphic relation on points is constructed
## where the points are indices of the elements of the underlying domain
## in sorted order.
##
DeclareGlobalFunction("AsBinaryRelationOnPoints");
###############################################################################
##
#A Successors( <R> )
##
## returns the list of images of a binary relation <R>. If the underlying
## domain of the relation is not `[1..<n>]' for some positive integer <n>,
## then an error is signalled.
##
## The returned value of `Successors' is a list of lists where the lists are
## ordered as the elements according to the sorted order of the underlying
## set of <R>. Each list consists of the images of the element whose index
## is the same as the list with the underlying set in sorted order.
##
## The `Successors' of a relation is the adjacency list representation
## of the relation.
##
DeclareAttribute("Successors", IsBinaryRelation);
###############################################################################
#A DegreeOfBinaryRelation(<R>)
##
## returns the size of the underlying domain of the binary relation <R>.
## This is most natural when working with a binary relation on points.
##
DeclareAttribute("DegreeOfBinaryRelation", IsBinaryRelation);
############################################################################
##
#A UnderlyingDomainOfBinaryRelation(<R>)
##
## is a synonym for the `Source' (see~"Source") of the relation <R> when
## considered as a general mapping.
##
DeclareSynonym("UnderlyingDomainOfBinaryRelation",Source);
#############################################################################
##
## Properties of binary relations.
##
#############################################################################
#############################################################################
##
#P IsReflexiveBinaryRelation(<R>)
##
## returns `true' if the binary relation <R> is reflexive, and `false'
## otherwise.
##
## \index{reflexive relation}
## A binary relation <R> (as tuples) on a set <X> is *reflexive* if
## for all $x\in X$, $(x,x)\in R$. Alternatively, <R> as a mapping
## is reflexive if for all $x\in X$, $x$ is an element of the image set
## $R(x)$.
##
## A reflexive binary relation is necessarily a total endomorphic
## mapping (tested via `IsTotal'; see~"IsTotal").
##
DeclareProperty("IsReflexiveBinaryRelation", IsBinaryRelation);
#############################################################################
##
#P IsSymmetricBinaryRelation(<R>)
##
## returns `true' if the binary relation <R> is symmetric, and `false'
## otherwise.
##
## \index{symmetric relation}
## A binary relation <R> (as tuples) on a set <X> is *symmetric* if
## $(x,y)\in R$ then $(y,x)\in R$. Alternatively, <R> as a mapping
## is symmetric if for all $x\in X$, the preimage set of $x$ under $R$ equals
## the image set $R(x)$.
##
DeclareProperty("IsSymmetricBinaryRelation", IsBinaryRelation);
#############################################################################
##
#P IsTransitiveBinaryRelation(<R>)
##
## returns `true' if the binary relation <R> is transitive, and `false'
## otherwise.
##
## \index{transitive relation}
## A binary relation <R> (as tuples) on a set <X> is *transitive* if
## $(x,y), (y,z)\in R$ then $(x,z)\in R$. Alternatively, <R> as a mapping
## is transitive if for all $x\in X$, the image set $R(R(x))$ of the image
## set $R(x)$ of $x$ is a subset of $R(x)$.
##
DeclareProperty("IsTransitiveBinaryRelation", IsBinaryRelation);
#############################################################################
##
#P IsAntisymmetricBinaryRelation(<rel>)
##
## returns `true' if the binary relation <rel> is antisymmetric, and `false'
## otherwise.
##
## \index{antisymmetric relation}
## A binary relation <R> (as tuples) on a set <X> is *antisymmetric* if
## $(x,y), (y,x)\in R$ implies $x = y$. Alternatively, <R> as a mapping
## is antisymmetric if for all $x\in X$, the intersection of the
## preimage set of $x$ under $R$ and
## the image set $R(x)$ is $\{x\}$.
##
DeclareProperty("IsAntisymmetricBinaryRelation",IsBinaryRelation);
#############################################################################
##
#P IsPreOrderBinaryRelation(<rel>)
##
## returns `true' if the binary relation <rel> is a preorder, and `false'
## otherwise.
##
## \index{preorder}
## A *preorder* is a binary relation that is both reflexive and transitive.
##
DeclareProperty("IsPreOrderBinaryRelation",IsBinaryRelation);
#############################################################################
##
#P IsPartialOrderBinaryRelation(<rel>)
##
## returns `true' if the binary relation <rel> is a partial order, and
## `false' otherwise.
##
## \index{partial order}
## A *partial order* is a preorder which is also antisymmetric.
##
DeclareProperty("IsPartialOrderBinaryRelation",IsBinaryRelation);
##
InstallTrueMethod(IsPreOrderBinaryRelation, IsReflexiveBinaryRelation and
IsTransitiveBinaryRelation);
InstallTrueMethod(IsPartialOrderBinaryRelation, IsPreOrderBinaryRelation and
IsAntisymmetricBinaryRelation);
InstallTrueMethod(IsTotal, IsReflexiveBinaryRelation);
#############################################################################
##
#P IsLatticeOrderBinaryRelation(<rel>)
##
## return 'true' if the binary relation is a lattice order, and false
## otherwise.
##
## \index{lattice order}
## A *lattice order* is a partial order in which each pair of elements
## has a greatest lower bound and a least upper bound.
##
DeclareProperty("IsLatticeOrderBinaryRelation",IsBinaryRelation);
##
InstallTrueMethod(IsPartialOrderBinaryRelation, IsLatticeOrderBinaryRelation);
############################################################################
##
## Equivalence Relations
##
#############################################################################
#############################################################################
##
#P IsEquivalenceRelation( <R> )
##
## returns `true' if the binary relation <R> is an equivalence relation, and
## `false' otherwise.
##
## \index{equivalence relation}
## Recall, that a relation <R> on the set <X> is an *equivalence relation*
## if it is symmetric, transitive, and reflexive.
##
DeclareProperty("IsEquivalenceRelation", IsBinaryRelation);
InstallTrueMethod(IsBinaryRelation, IsEquivalenceRelation);
InstallTrueMethod(IsReflexiveBinaryRelation, IsEquivalenceRelation);
InstallTrueMethod(IsTransitiveBinaryRelation, IsEquivalenceRelation);
InstallTrueMethod(IsSymmetricBinaryRelation, IsEquivalenceRelation);
InstallTrueMethod(IsEquivalenceRelation,
IsReflexiveBinaryRelation and
IsTransitiveBinaryRelation and IsSymmetricBinaryRelation);
#############################################################################
##
## Closure operations for binary relations.
##
#############################################################################
#############################################################################
##
#O ReflexiveClosureBinaryRelation( <R> )
##
## is the smallest binary relation containing the binary relation <R> which
## is reflexive. This closure inherents the properties symmetric and
## transitive from <R>. E.g. if <R> is symmetric then its reflexive closure
## is also.
##
DeclareOperation("ReflexiveClosureBinaryRelation", [IsBinaryRelation]);
#############################################################################
##
#O SymmetricClosureBinaryRelation( <R> )
##
## is the smallest binary relation containing the binary relation <R> which
## is symmetric. This closure inherents the properties reflexive and
## transitive from <R>. E.g. if <R> is reflexive then its symmetric closure
## is also.
##
DeclareOperation("SymmetricClosureBinaryRelation", [IsBinaryRelation]);
#############################################################################
##
#O TransitiveClosureBinaryRelation( <rel> )
##
## is the smallest binary relation containing the binary relation <R> which
## is transitive. This closure inerents the properties reflexive and
## symmetric from <R>. E.g. if <R> is symmetric then its transitive closure
## is also.
##
## `TransitiveClosureBinaryRelation' is a modified version of the
## Floyd-Warshall method of solving the all-pairs shortest-paths problem
## on a directed graph. Its asymptotic runtime is $O(n^3)$ where n is
## the size of the vertex set. It only assumes there is an arbitrary
## (but fixed) ordering of the vertex set.
##
DeclareOperation("TransitiveClosureBinaryRelation", [IsBinaryRelation]);
#############################################################################
##
#O HasseDiagramBinaryRelation(<partial-order>)
##
## is the smallest relation contained in the partial order <partial-order>
## whose reflexive and transitive closure is equal to <partial-order>.
##
DeclareOperation("HasseDiagramBinaryRelation", [IsBinaryRelation]);
#############################################################################
##
#P IsHasseDiagram(<rel>)
##
## returns `true' if the binary relation <rel> is a Hasse Diagram of a
## partial order, i.e. was computed via `HasseDiagramBinaryRelation'
## (see~"HasseDiagramBinaryRelation").
##
DeclareProperty("IsHasseDiagram", IsBinaryRelation);
#############################################################################
##
#A PartialOrderOfHasseDiagram(<HD>)
##
## is the partial order associated with the Hasse Diagram <HD>
## i.e. the partial order generated by the reflexive and
## transitive closure of <HD>.
##
DeclareAttribute("PartialOrderOfHasseDiagram",IsBinaryRelation);
#############################################################################
##
#F PartialOrderByOrderingFunction(<dom>, <orderfunc>)
##
## constructs a partial order whose elements are from the domain <dom>
## and are ordered using the ordering function <orderfunc>. The ordering
## function must be a binary function returning a boolean value. If the
## ordering function does not describe a partial order then `fail' is
## returned.
##
DeclareGlobalFunction("PartialOrderByOrderingFunction");
#############################################################################
##
#O StronglyConnectedComponents(<R>)
##
## returns an equivalence relation on the vertices of the binary relation
## <R>.
##
DeclareOperation("StronglyConnectedComponents", [IsBinaryRelation]);
#############################################################################
##
## Special definitions for exponentiation with sets, lists, and Zero
##
DeclareOperation("POW", [IsListOrCollection, IsBinaryRelation]);
DeclareOperation("\+", [IsBinaryRelation, IsBinaryRelation]);
DeclareOperation("\-", [IsBinaryRelation, IsBinaryRelation]);
#############################################################################
##
#A EquivalenceRelationPartition(<equiv>)
##
## returns a list of lists of elements
## of the underlying set of the equivalence relation <equiv>.
## The lists are precisely the nonsingleton equivalence classes of the
## equivalence.
## This allows us to describe ``small'' equivalences on infinite sets.
##
DeclareAttribute("EquivalenceRelationPartition", IsEquivalenceRelation);
#############################################################################
##
#A GeneratorsOfEquivalenceRelationPartition(<equiv>)
##
## is a set of generating pairs for the equivalence relation <equiv>. This
## set is not unique. The equivalence <equiv> is the smallest equivalence
## relation over the underlying set <X> which contains the generating pairs.
##
DeclareAttribute("GeneratorsOfEquivalenceRelationPartition",
IsEquivalenceRelation);
#############################################################################
##
#F EquivalenceRelationByPartition( <domain>, <list> )
#F EquivalenceRelationByPartitionNC( <domain>, <list> )
##
## constructs the equivalence relation over the set <domain>
## which induces the partition represented by <list>.
## This representation includes only the non-trivial blocks
## (or equivalent classes). <list> is a list of lists,
## each of these lists contain elements of <domain> and are
## pairwise mutually exclusive.
##
## The list of lists do not need to be in any order nor do the
## elements in the blocks (see `EquivalenceRelationPartition').
## a list of elements of <domain>
## The partition <list> is a
## list of lists, each of these is a list of elements of <domain>
## that makes up a block (or equivalent class). The
## <domain> is the domain over which the relation is defined, and
## <list> is a list of lists, each of these is a list of elements
## of <domain> which are related to each other.
## <list> need only contain the nontrivial blocks
## and singletons will be ignored. The NC version will not check
## to see if the lists are pairwise mutually exclusive or that
## they contain only elements of the domain.
##
DeclareGlobalFunction("EquivalenceRelationByPartition");
DeclareGlobalFunction("EquivalenceRelationByPartitionNC");
#############################################################################
##
#F EquivalenceRelationByProperty( <domain>, <property> )
##
## creates an equivalence relation on <domain> whose only defining
## datum is that of having the property <property>.
##
DeclareGlobalFunction("EquivalenceRelationByProperty");
#############################################################################
##
#F EquivalenceRelationByRelation( <rel> )
##
## returns the smallest equivalence
## relation containing the binary relation <rel>.
##
DeclareGlobalFunction("EquivalenceRelationByRelation");
#############################################################################
##
## Some other creation functions which might be useful in the future
##
## EquivalenceRelationByFunction( <X>, <function> )
##
## EquivalenceRelationByFunction - the function goes from
## $X \times X \rightarrow $ {<true>, <false>}.
#############################################################################
##
#O JoinEquivalenceRelations( <equiv1>,<equiv2> )
#O MeetEquivalenceRelations( <equiv1>,<equiv2> )
##
## `JoinEquivalenceRelations(<equiv1>,<equiv2>)' returns the smallest
## equivalence relation containing both the equivalence relations
## <equiv1> and <equiv2>.
##
## `MeetEquivalenceRelations( <equiv1>,<equiv2> )' returns the
## intersection of the two equivalence relations <equiv1> and <equiv2>.
##
DeclareOperation("JoinEquivalenceRelations",
[IsEquivalenceRelation,IsEquivalenceRelation]);
DeclareOperation("MeetEquivalenceRelations",
[IsEquivalenceRelation,IsEquivalenceRelation]);
#############################################################################
##
#C IsEquivalenceClass( <O> )
##
## returns `true' if the object <O> is an equivalence class, and `false'
## otherwise.
##
## \index{equivalence class}
## An *equivalence class* is a collection of elements which are mutually
## related to each other in the associated equivalence relation. Note,
## this is a special category of object and not just a list of elements.
##
DeclareCategory("IsEquivalenceClass",IsDomain and IsDuplicateFreeCollection);
#############################################################################
##
#A EquivalenceClassRelation(<C>)
##
## returns the equivalence relation of which <C> is a class.
##
DeclareAttribute("EquivalenceClassRelation", IsEquivalenceClass);
#############################################################################
##
#A EquivalenceClasses(<rel>)
##
## returns a list of all equivalence classes of the equivalence relation <rel>.
## Note that it is possible for different methods to yield the list
## in different orders, so that for two equivalence relations
## $c1$ and $c2$ we may have $c1 = c2$ without having
## $`EquivalenceClasses'( c1 ) = `EquivalenceClasses'( c2 )$.
##
DeclareAttribute("EquivalenceClasses", IsEquivalenceRelation);
#############################################################################
##
#O EquivalenceClassOfElement(<rel>,<elt>)
#O EquivalenceClassOfElementNC(<rel>,<elt>)
##
## return the equivalence class of <elt> in the binary relation <rel>,
## where <elt> is an element (i.e. a pair) of the domain of <rel>.
## In the second form, it is not checked that <elt> is in the domain
## over which <rel> is defined.
##
DeclareOperation("EquivalenceClassOfElement",
[IsEquivalenceRelation, IsObject]);
DeclareOperation("EquivalenceClassOfElementNC",
[IsEquivalenceRelation, IsObject]);
#############################################################################
##
#F EquivalenceRelationByPairs( <D>, <elms> )
#F EquivalenceRelationByPairsNC( <D>, <elms> )
##
## return the smallest equivalence relation
## on the domain <D> such that every pair in <elms>
## is in the relation.
##
## In the second form, it is not checked that <elms> are in the domain <D>.
##
DeclareGlobalFunction("EquivalenceRelationByPairs");
DeclareGlobalFunction("EquivalenceRelationByPairsNC");
#############################################################################
#E
##
|