File: ringpoly.gi

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (528 lines) | stat: -rw-r--r-- 15,972 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
#############################################################################
##
#W  ringpoly.gi                 GAP Library                      Frank Celler
##
#Y  Copyright (C)  1996,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1999 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods  for attributes, properties and operations
##  for polynomial rings.
##
Revision.ringpoly_gi :=
    "@(#)$Id: ringpoly.gi,v 4.41.2.5 2008/04/15 10:02:11 stefan Exp $";


#############################################################################
##
#M  GiveNumbersNIndeterminates(<ratfunfam>,<count>,<names>,<avoid>)
BindGlobal("GiveNumbersNIndeterminates",function(rfam,cnt,nam,avoid)
local idn,i,nbound;
  avoid:=List(avoid,IndeterminateNumberOfLaurentPolynomial);
  idn:=[];
  i:=1;
  while Length(idn)<cnt do
    nbound:=IsBound(nam[Length(idn)+1]);
    # skip unwanted indeterminates
    while (i in avoid) or (nbound and HasIndeterminateName(rfam,i)) do
      i:=i+1;
    od;
    Add(idn,i);
    if nbound then
      SetIndeterminateName(rfam,i,nam[Length(idn)]);
    fi;
    i:=i+1;
  od;
  return idn;
end);

#############################################################################
##
#M  PolynomialRing( <ring>, <rank> )  . . .  full polynomial ring over a ring
##
#T polynomial rings should be special cases of free magma rings!  one needs
#T to set an underlying magma with one, and modify the type to be
#T AlgebraWithOne and FreeMagmaRingWithOne.  (for example, ring generators in
#T the case of polynomial rings over finite fields are then automatically
#T computable ...)
##

#############################################################################
InstallMethod( PolynomialRing,"indetlist", true, [ IsRing, IsList ], 
# force higher ranking than following (string) method
  1,
function( r, n )
    local   efam,  rfun,  zero,  one,  ind,  i,  type,  prng;

    if IsPolynomialFunctionCollection(n) and ForAll(n,IsLaurentPolynomial) then
      n:=List(n,IndeterminateNumberOfLaurentPolynomial);
    fi;
    if IsEmpty(n) or not IsInt(n[1]) then
      TryNextMethod();
    fi;

    # get the elements family of the ring
    efam := ElementsFamily( FamilyObj(r) );

    # get the rational functions of the elements family
    rfun := RationalFunctionsFamily(efam);

    # cache univariate rings - they might be created often
    if not IsBound(r!.univariateRings) then
      r!.univariateRings:=[];
    fi;

    if Length(n)=1 
      # some bozo might put in a ridiculous number
      and n[1]<10000 
      # only cache for the prime field
      and IsField(r) 
      and IsBound(r!.univariateRings[n[1]]) then
      return r!.univariateRings[n[1]];
    fi;

    # first the indeterminates
    zero := Zero(r);
    one  := One(r);
    ind  := [];
    for i  in n  do
        Add( ind, UnivariatePolynomialByCoefficients(efam,[zero,one],i) );
    od;

    # construct a polynomial ring
    type := IsPolynomialRing and IsAttributeStoringRep and IsFreeLeftModule;
    # over a field the ring should be an algebra with one.
    if HasIsField(r) and IsField(r)  then
      type:=type and IsAlgebraWithOne;
    fi;

    if Length(n) = 1 and HasIsField(r) and IsField(r)  then
        type := type and IsUnivariatePolynomialRing and IsEuclideanRing;
                     #and IsAlgebraWithOne; # done above already
    elif Length(n) = 1 and IsRingWithOne(r) then
        type := type and IsUnivariatePolynomialRing and IsFLMLORWithOne;
    elif Length(n) = 1  then
        type := type and IsUnivariatePolynomialRing;
    fi;

    # Polynomial rings over commutative rings are themselves commutative.
    if HasIsCommutative( r ) and IsCommutative( r ) then
      type:= type and IsCommutative;
    fi;

    # Polynomial rings over commutative rings are themselves commutative.
    if HasIsAssociative( r ) and IsAssociative( r ) then
      type:= type and IsAssociative;
    fi;

    # set categories to allow method selection according to base ring
    if HasIsField(r) and IsField(r) then
        if IsFinite(r) then
            type := type and IsFiniteFieldPolynomialRing;
        elif IsRationals(r) then
            type := type and IsRationalsPolynomialRing;
        elif # catch algebraic extensions
	  IsIdenticalObj(One(r),1) and IsAbelianNumberField( r ) then
          type:= type and IsAbelianNumberFieldPolynomialRing;
	elif IsAlgebraicExtension(r) then
          type:= type and IsAlgebraicExtensionPolynomialRing;
        fi;
    fi;
    prng := Objectify( NewType( CollectionsFamily(rfun), type ), rec() );

    # set the left acting domain
    SetLeftActingDomain( prng, r );

    # set the indeterminates
    SetIndeterminatesOfPolynomialRing( prng, ind );

    # set known properties
    SetIsFinite( prng, false );
    SetIsFiniteDimensional( prng, false );
    SetSize( prng, infinity );

    # set the coefficients ring
    SetCoefficientsRing( prng, r );

    # set one and zero
    SetOne(  prng, ind[1]^0 );
    SetZero( prng, ind[1]*Zero(r) );

    # set the generators left operator ring-with-one if the rank is one
    if IsRingWithOne(r) then
        SetGeneratorsOfLeftOperatorRingWithOne( prng, ind );
    fi;


    if Length(n)=1 and n[1]<10000 
      # only cache for the prime field
      and IsField(r) then
      r!.univariateRings[n[1]]:=prng;
    fi;

    # and return
    return prng;

end );

InstallMethod( PolynomialRing,"names",true, [ IsRing, IsList ], 0,
function( r, nam )
  if not IsString(nam[1]) then
    TryNextMethod();
  fi;
  return PolynomialRing( r, GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),
	                             Length(nam),nam,[]));
end );


InstallMethod( PolynomialRing,"rank",true, [ IsRing, IsPosInt ], 0,
function( r, n )
  return PolynomialRing( r, [ 1 .. n ] );
end );

InstallOtherMethod( PolynomialRing,"rank,avoid",true,
  [ IsRing, IsPosInt,IsList ], 0,
function( r, n,a )
  return PolynomialRing( r, GiveNumbersNIndeterminates(
           RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),n,[],a));
end );

InstallOtherMethod(PolynomialRing,"names,avoid",true,[IsRing,IsList,IsList],0,
function( r, nam,a )
  return PolynomialRing( r, GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),
	                             Length(nam),nam,a));
end );


#############################################################################
InstallOtherMethod( PolynomialRing,
    true,
    [ IsRing ],
    0,

function( r )
    return PolynomialRing(r,[1]);
end );


#############################################################################
##
#M  UnivariatePolynomialRing( <ring> )  . .  full polynomial ring over a ring
##
InstallMethod( UnivariatePolynomialRing,"indet 1", true, [ IsRing ], 0,
function( r )
  return PolynomialRing( r, [1] );
end );

InstallOtherMethod(UnivariatePolynomialRing,"indet number",true,
  [ IsRing,IsPosInt ], 0,
function( r,n )
  return PolynomialRing( r, [n] );
end );

InstallOtherMethod(UnivariatePolynomialRing,"name",true,
  [ IsRing,IsString], 0,
function( r,n )
  if not IsString(n) then
    TryNextMethod();
  fi;
  return PolynomialRing( r, GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),1,[n],[]));
end);

InstallOtherMethod(UnivariatePolynomialRing,"avoid",true,
  [ IsRing,IsList], 0,
function( r,a )
  if not IsRationalFunction(a[1]) then
    TryNextMethod();
  fi;
  return PolynomialRing( r, GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),1,[],a));
end);

InstallOtherMethod(UnivariatePolynomialRing,"name,avoid",true,
  [ IsRing,IsString,IsList], 0,
function( r,n,a )
  if not IsString(n[1]) then
    TryNextMethod();
  fi;
  return PolynomialRing( r, GiveNumbersNIndeterminates(
	    RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),1,[n],a));
end);

#############################################################################
##
#M  ViewString( <pring> ) . . . . . . . . . . . . . . . for a polynomial ring
##
InstallMethod( ViewString,
               "for a polynomial ring", true,  [ IsPolynomialRing ], 0,

  R -> Concatenation(String(LeftActingDomain(R)),
                     Filtered(String(IndeterminatesOfPolynomialRing(R)),
                              ch -> ch <> ' ')) );

#############################################################################
##
#M  ViewObj( <pring> ) . . . . . . . . . . . . . . . .  for a polynomial ring
##
InstallMethod( ViewObj,
              "for a polynomial ring", true, [ IsPolynomialRing ],
              # override the higher ranking FLMLOR method
              RankFilter(IsFLMLOR),

  function( R )
    Print(ViewString(R));
  end );

#############################################################################
##
#M  String( <pring> ) . . . . . . . . . . . . . . . . . for a polynomial ring
##
InstallMethod( String,
               "for a polynomial ring", true, [ IsPolynomialRing ],
               RankFilter(IsFLMLOR),
               R -> Concatenation("PolynomialRing( ",
                                   String(LeftActingDomain(R)),", ",
                                   String(IndeterminatesOfPolynomialRing(R)),
                                  " )") );

#############################################################################
##
#M  PrintObj( <pring> )
##
InstallMethod( PrintObj,
    "for a polynomial ring",
    true,
    [ IsPolynomialRing ],
    # override the higher ranking FLMLOR method
    RankFilter(IsFLMLOR),

function( obj )
local i,f;
    Print( "PolynomialRing( ", LeftActingDomain( obj ), ", [");
    f:=false;
    for i in IndeterminatesOfPolynomialRing(obj) do
      if f then Print(", ");fi;
      Print("\"",i,"\"");
      f:=true;
    od;
    Print("] )" );
end );


#############################################################################
##
#M  Indeterminate( <ring>,<nr> )
##
InstallMethod( Indeterminate,"number", true, [ IsRing,IsPosInt ],0,
function( r,n )
  return UnivariatePolynomialByCoefficients(ElementsFamily(FamilyObj(r)),
           [Zero(r),One(r)],n);
end);

InstallOtherMethod(Indeterminate,"fam,number",true,[IsFamily,IsPosInt],0,
function(fam,n)
  return UnivariatePolynomialByCoefficients(fam,[Zero(fam),One(fam)],n);
end);

InstallOtherMethod( Indeterminate,"number 1", true, [ IsRing ],0,
function( r )
  return UnivariatePolynomialByCoefficients(ElementsFamily(FamilyObj(r)),
           [Zero(r),One(r)],1);
end);

InstallOtherMethod( Indeterminate,"number, avoid", true, [ IsRing,IsList ],0,
function( r,a )
  if not IsRationalFunction(a[1]) then
    TryNextMethod();
  fi;
  r:=ElementsFamily(FamilyObj(r));
  return UnivariatePolynomialByCoefficients(r,[Zero(r),One(r)],
          GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[],a)[1]);
end);

InstallOtherMethod( Indeterminate,"number, name", true, [ IsRing,IsString ],0,
function( r,n )
  if not IsString(n) then
    TryNextMethod();
  fi;
  r:=ElementsFamily(FamilyObj(r));
  return UnivariatePolynomialByCoefficients(r,[Zero(r),One(r)],
          GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[n],[])[1]);
end);

InstallOtherMethod( Indeterminate,"number, name, avoid",true,
  [ IsRing,IsString,IsList ],0,
function( r,n,a )
  if not IsString(n) then
    TryNextMethod();
  fi;
  r:=ElementsFamily(FamilyObj(r));
  return UnivariatePolynomialByCoefficients(r,[Zero(r),One(r)],
          GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[n],a)[1]);
end);

#############################################################################
##
#M  \.   Access to indeterminates
##
InstallMethod(\.,"pring indeterminates",true,[IsPolynomialRing,IsPosInt],
function(r,n)
local v, fam, a, i;
  v:=IndeterminatesOfPolynomialRing(r);
  n:=NameRNam(n);
  if ForAll(n,i->i in CHARS_DIGITS) then
    # number
    n:=Int(n);
    if Length(v)>=n then
      return v[n];
    fi;
  else
    fam:=ElementsFamily(FamilyObj(r));
    for i in v do
      a:=IndeterminateNumberOfLaurentPolynomial(i);
      if HasIndeterminateName(fam,a) and IndeterminateName(fam,a)=n then
	return i;
      fi;
    od;
  fi;
  TryNextMethod();
end);

#############################################################################
##
#M  <poly> in <polyring>
##
InstallMethod( \in,
    "polynomial in polynomial ring",
    IsElmsColls,
    [ IsPolynomialFunction,
      IsPolynomialRing ],
    0,

function( p, R )
    local   ext,  crng,  inds,  exp,  i;

    # <p> must at least be a polynomial
    if not IsPolynomial(p)  then
        return false;
    fi;

    # get the external representation
    ext := ExtRepPolynomialRatFun(p);

    # and the indeterminates and coefficients ring of <R>
    crng := CoefficientsRing(R);
    inds := Set( List( IndeterminatesOfPolynomialRing(R),
                       x -> ExtRepPolynomialRatFun(x)[1][1] ) );

    # first check the indeterminates
    for exp  in ext{[ 1, 3 .. Length(ext)-1 ]}  do
        for i  in exp{[ 1, 3 .. Length(exp)-1 ]}  do
            if not i in inds  then
                return false;
            fi;
        od;
    od;

    # then the coefficients
    for i  in ext{[ 2, 4 .. Length(ext) ]}  do
        if not i in crng  then
            return false;
        fi;
    od;
    return true;

end );


#############################################################################
##
#M  DefaultRingByGenerators( <gens> )   . . . .  ring containing a collection
##
InstallMethod( DefaultRingByGenerators,
    true,
    [ IsRationalFunctionCollection ],
    0,

function( ogens )
    local   gens,ind,  cfs,  g,  ext,  exp,  i,univ;

    if not ForAll( ogens, IsPolynomial )  then
        TryNextMethod();
    fi;
    # the indices of the non-constant functions that have an indeterminate
    # number
    g:=Filtered([1..Length(ogens)],
      i->HasIndeterminateNumberOfUnivariateRationalFunction(ogens[i]) and
         HasCoefficientsOfLaurentPolynomial(ogens[i]));

    univ:=Filtered(ogens{g},
	     i->DegreeOfUnivariateLaurentPolynomial(i)>-1 and
		DegreeOfUnivariateLaurentPolynomial(i)<infinity);

    gens:=ogens{Difference([1..Length(ogens)],g)};

    # univariate indeterminates set
    ind := Set(List(univ,IndeterminateNumberOfUnivariateRationalFunction));
    cfs := []; # univariate coefficients set
    for g in univ do
      UniteSet(cfs,CoefficientsOfUnivariateLaurentPolynomial(g)[1]);
    od;

    # the nonunivariate ones
    for g  in gens  do
        ext := ExtRepPolynomialRatFun(g);
        for exp  in ext{[ 1, 3 .. Length(ext)-1 ]}  do
            for i  in exp{[ 1, 3 .. Length(exp)-1 ]}  do
                AddSet( ind, i );
            od;
        od;
        for i  in ext{[ 2, 4 .. Length(ext) ]}  do
            Add( cfs, i );
        od;
    od;

    if Length(cfs)=0 then
      # special case for zero polynomial
      Add(cfs,Zero(CoefficientsFamily(FamilyObj(ogens[1]))));
    fi;

    if Length(ind)=0 then
      # this can only happen if the polynomials are constant. Enforce Index 1
      return PolynomialRing( DefaultField(cfs), [1] );
    else
      return PolynomialRing( DefaultField(cfs), ind );
    fi;
end );

#############################################################################
##
#M  MinimalPolynomial( <ring>, <elm> )
##
InstallOtherMethod( MinimalPolynomial,"supply indeterminate 1",
    [ IsRing, IsMultiplicativeElement and IsAdditiveElement ],
function(r,e)
  return MinimalPolynomial(r,e,1);
end);


#############################################################################
##
#M  StandardAssociate( <pring>, <upol> )
##
InstallMethod(StandardAssociate,"normalize leading coefficient",IsCollsElms,
  [IsPolynomialRing, IsPolynomial],0,
function(R,f)
local c;
  c:=LeadingCoefficient(f);
  return f*StandardAssociate(CoefficientsRing(R),c)/c;
end);


#############################################################################
##
#E