File: schur.gd

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (145 lines) | stat: -rw-r--r-- 5,597 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#############################################################################
##
#W  schur.gd                 GAP library                        Werner Nickel 
#W                                                           Alexander Hulpke
##
#Y  (C) 2000 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
Revision.schur_gd :=
    "@(#)$Id: schur.gd,v 4.8.4.2 2006/08/17 14:41:21 gap Exp $";

##############################################################################
##
#V  InfoSchur()
##
DeclareInfoClass( "InfoSchur" );

##############################################################################
##
#O  SchurCover(<G>)
##
##  returns one (of possibly several) Schur covers of <G>.
##
##  At the moment this cover is represented as a finitely presented group
##  and `IsomorphismPermGroup' would be needed to convert it to a
##  permutation group.
##
##  If also the relation to <G> is needed, `EpimorphismSchurCover' should be
##  used.
##
DeclareAttribute( "SchurCover", IsGroup );

##############################################################################
##
#O  EpimorphismSchurCover(<G>[,<pl>])
##
##  returns an epimorphism <epi> from a group <D> onto <G>. The group <D> is
##  one (of possibly several) Schur covers of <G>.
##  The group <D> can be obtained as the `Source' of <epi>. the kernel of
##  <epi> is the schur multiplier of <G>.
##  If <pl> is given as a list of primes, only the multiplier part for these
##  primes is realized.
##  At the moment, <D> is represented as a finitely presented group.
DeclareAttribute( "EpimorphismSchurCover", IsGroup );

##############################################################################
##
#A  AbelianInvariantsMultiplier(<G>)
##
##  \index{Multiplier}\atindex{Schur multiplier}{@Schur multiplier}
##  returns a list of the abelian invariants of the Schur multiplier of <G>.
DeclareAttribute( "AbelianInvariantsMultiplier", IsGroup );

##############################################################################
####  Derived functions.                                       Robert F. Morse
####  
##############################################################################
##
#A  Epicentre(<G>)
#A  ExteriorCentre(<G>)
##
##  There are various ways of describing the epicentre of a group. It is
##  the smallest normal subgroup $N$ of $G$ such that $G/N$ is a central
##  quotient of a group. It is also equal to the Exterior Center of $G$
##  \cite{Ellis98}.
##
DeclareAttribute("Epicentre", IsGroup );
DeclareSynonym("Epicenter", Epicentre);
DeclareSynonym("ExteriorCentre", Epicentre);
DeclareSynonym("ExteriorCenter", Epicentre);

##############################################################################
##
#O  NonabelianExteriorSquare(<G>)
##
##  Computes the Nonabelian Exterior Square $G\wedge G$ of a group $G$ 
##  which for a finitely presented group is the derived subgroup of 
##  any Schur Cover of $G$ \cite{BJR87}.
##  
DeclareOperation("NonabelianExteriorSquare", [IsGroup]);

##############################################################################
##
#O  EpimorphismNonabelianExteriorSquare(<G>)
##  
##  Computes the mapping $G\wedge G \to G$. The kernel of this
##  mapping is equal to the Schur Multiplicator of $G$.
##
DeclareOperation("EpimorphismNonabelianExteriorSquare", [IsGroup]);

##############################################################################
##
#P  IsCentralFactor(<G>) 
##
##  This method 
##  determines if there exists a group $H$ such that <G> is isomormorphic 
##  to the quotient $H/Z(H)$. A group with this property is called in 
##  literature *capable*.
##  A group being capable is 
##  equivalent to the Epicentre of $G$ being trivial \cite{BFS79}.
##  
DeclareProperty("IsCentralFactor", IsGroup);

##############################################################################
###########################END RFM############################################


##############################################################################
##
#F  SchuMu(<G>,<p>)
##
## returns epimorphism from p-part of multiplier.p-Sylow (note: This
## extension is *not* necessarily isomorphic to a sylow subgroup of a
## Darstellungsgruppe!) onto p-Sylow, the
## kernel is the p-part of the multiplier.
## The implemented algorithm is based on section 7 in Derek Holt's paper.
## However we use some of the general homomorphism setup to avoid having to
## remember certain relations.
DeclareGlobalFunction("SchuMu");

##############################################################################
##
#F  CorestEval(<FG>,<s>)
##
## evaluate corestriction mapping.
## <FH> is an homomorphism from a finitely presented group onto a finite
## group <G>. <s> an epimorphism onto a p-Sylow subgroup of <G> as obtained
## from `SchuMu'.
## This function evaluates the relators of the source of <FH> in the
## extension M_p.<G>. It returns a list whose entries are of the form
## [<rel>,<val>], where <rel> is a relator of <G> and <val> its evaluation as
## an element of M_p.
DeclareGlobalFunction("CorestEval");

##############################################################################
##
#F  RelatorFixedMultiplier(<hom>,<p>)
##
##  Let <hom> an epimorphism from an fp group onto a finite group <G>. This
##  function returns an epimorphism onto the <p>-Sylow subgroup of <G>,
##  whose kernel is the largest quotient of the multiplier, that can lift
##  <hom> to a larger quotient. (The source of this map thus is $M_R(B)$
##  of~\cite{HulpkeQuot}.)
DeclareGlobalFunction("RelatorFixedMultiplier");