1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
#############################################################################
##
#W semigrp.gd GAP library Thomas Breuer
##
#H @(#)$Id: semigrp.gd,v 4.36.2.1 2007/08/28 10:56:05 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of operations for semigroups.
##
Revision.semigrp_gd :=
"@(#)$Id: semigrp.gd,v 4.36.2.1 2007/08/28 10:56:05 gap Exp $";
#############################################################################
##
#P IsSemigroup( <D> )
##
## returns `true' if the object <D> is a semigroup.
## \index{semigroup}
## A *semigroup* is a magma (see~"Magmas") with associative multiplication.
##
DeclareSynonymAttr( "IsSemigroup", IsMagma and IsAssociative );
#############################################################################
##
#F Semigroup( <gen1>, <gen2> ... ) . . . . semigroup generated by collection
#F Semigroup( <gens> ) . . . . . . . . . . semigroup generated by collection
##
## In the first form, `Semigroup' returns the semigroup generated by the
## arguments <gen1>, <gen2>, \dots,
## that is, the closure of these elements under multiplication.
## In the second form, `Semigroup' returns the semigroup generated by the
## elements in the homogeneous list <gens>;
## a square matrix as only argument is treated as one generator,
## not as a list of generators.
##
## It is *not* checked whether the underlying multiplication is associative,
## use `Magma' (see~"Magma") and `IsAssociative' (see~"IsAssociative")
## if you want to check whether a magma is in fact a semigroup.
##
DeclareGlobalFunction( "Semigroup" );
#############################################################################
##
#F Subsemigroup( <S>, <gens> ) . . . subsemigroup of <S> generated by <gens>
#F SubsemigroupNC( <S>, <gens> ) . . subsemigroup of <S> generated by <gens>
##
## are just synonyms of `Submagma' and `SubmagmaNC', respectively
## (see~"Submagma").
##
DeclareSynonym( "Subsemigroup", Submagma );
DeclareSynonym( "SubsemigroupNC", SubmagmaNC );
#############################################################################
##
#O SemigroupByGenerators( <gens> ) . . . . . . semigroup generated by <gens>
##
## is the underlying operation of `Semigroup' (see~"Semigroup").
##
DeclareOperation( "SemigroupByGenerators", [ IsCollection ] );
#############################################################################
##
#A AsSemigroup( <C> ) . . . . . . . . collection <C> regarded as semigroup
##
## If <C> is a collection whose elements form a semigroup
## (see~"IsSemigroup") then `AsSemigroup' returns this semigroup.
## Otherwise `fail' is returned.
##
DeclareAttribute( "AsSemigroup", IsCollection );
#############################################################################
##
#O AsSubsemigroup( <D>, <C> )
##
## Let <D> be a domain and <C> a collection.
## If <C> is a subset of <D> that forms a semigroup then `AsSubsemigroup'
## returns this semigroup, with parent <D>.
## Otherwise `fail' is returned.
##
DeclareOperation( "AsSubsemigroup", [ IsDomain, IsCollection ] );
#############################################################################
##
#A GeneratorsOfSemigroup( <S> ) . . . semigroup generators of semigroup <S>
##
## Semigroup generators of a semigroup <D> are the same as magma generators
## (see~"GeneratorsOfMagma").
##
DeclareSynonymAttr( "GeneratorsOfSemigroup", GeneratorsOfMagma );
#############################################################################
##
#A CayleyGraphSemigroup( <S> )
#A CayleyGraphDualSemigroup( <S> )
##
##
DeclareAttribute("CayleyGraphSemigroup",IsSemigroup);
DeclareAttribute("CayleyGraphDualSemigroup",IsSemigroup);
#############################################################################
##
#F FreeSemigroup( [<wfilt>,]<rank> )
#F FreeSemigroup( [<wfilt>,]<rank>, <name> )
#F FreeSemigroup( [<wfilt>,]<name1>, <name2>, ... )
#F FreeSemigroup( [<wfilt>,]<names> )
#F FreeSemigroup( [<wfilt>,]infinity, <name>, <init> )
##
## Called in the first form, `FreeSemigroup' returns a free semigroup on
## <rank> generators.
## Called in the second form, `FreeSemigroup' returns a free semigroup on
## <rank> generators, printed as `<name>1', `<name>2' etc.,
## that is, each name is the concatenation of the string <name> and an
## integer from `1' to <range>.
## Called in the third form, `FreeSemigroup' returns a free semigroup on
## as many generators as arguments, printed as <name1>, <name2> etc.
## Called in the fourth form, `FreeSemigroup' returns a free semigroup on
## as many generators as the length of the list <names>, the $i$-th
## generator being printed as `<names>[$i$]'.
## Called in the fifth form, `FreeSemigroup' returns a free semigroup on
## infinitely many generators, where the first generators are printed
## by the names in the list <init>, and the other generators by <name>
## and an appended number.
##
## If the extra argument <wfilt> is given, it must be either
## `IsSyllableWordsFamily' or `IsLetterWordsFamily' or
## `IsWLetterWordsFamily' or `IsBLetterWordsFamily'. The filter then
## specifies the representation used for the elements of the free group
## (see~"Representations for Associative Words"). If no such filter is
## given, a letter representation is used.
##
DeclareGlobalFunction( "FreeSemigroup" );
#############################################################################
##
#P IsZeroGroup( <S> )
##
## is `true' if and only if the semigroup is a group with zero
## adjoined.
##
DeclareProperty( "IsZeroGroup", IsSemigroup );
#############################################################################
##
#P IsSimpleSemigroup( <S> )
##
## is `true' if and only if the semigroup has no proper ideals.
##
DeclareProperty( "IsSimpleSemigroup", IsSemigroup );
#############################################################################
##
#P IsZeroSimpleSemigroup( <S> )
##
## is `true' if and only if the semigroup has no proper ideals except for 0,
## where <S> is a semigroup with zero.
## If the semigroup does not find its zero, then a break-loop is entered.
##
DeclareProperty( "IsZeroSimpleSemigroup", IsSemigroup );
############################################################################
##
#A ANonReesCongruenceOfSemigroup( <S> )
##
## for a semigroup <S>, returns a non-Rees congruence if one exists
## or otherwise returns `fail'.
##
DeclareAttribute("ANonReesCongruenceOfSemigroup",IsSemigroup);
############################################################################
##
#P IsReesCongruenceSemigroup( <S> )
##
## returns `true' if <S> is a Rees Congruence semigroup, that is,
## if all congruences of <S> are Rees Congruences.
##
DeclareProperty( "IsReesCongruenceSemigroup", IsSemigroup );
#############################################################################
##
#O HomomorphismFactorSemigroup( <S>, <C> )
#O HomomorphismFactorSemigroupByClosure( <S>, <L> )
#O FactorSemigroup( <S>, <C> )
#O FactorSemigroupByClosure( <S>, <L> )
##
## each find the quotient of <S> by a congruence.
##
## In the first form <C> is a congruence and HomomorphismFactorSemigroup,
## returns a homomorphism $<S> \rightarrow <S>/<C>$.
##
## In the second form, <L> is a list of pairs of elements of <S>.
## Returns a homomorphism $<S> \rightarrow <S>/<C>$,
## where <C> is the congruence generated by <L>.
##
## `FactorSemigroup(<S>, <C>)' returns
## `Range( HomomorphismFactorSemigroup(<S>, <C>) )'.
##
## `FactorSemigroupByClosure(<S>, <L>)' returns
## `Range( HomomorphismFactorSemigroupByClosure(<S>, <L>) )'.
##
##
DeclareOperation( "HomomorphismFactorSemigroup",
[ IsSemigroup, IsSemigroupCongruence ] );
DeclareOperation( "HomomorphismFactorSemigroupByClosure",
[ IsSemigroup, IsList ] );
DeclareOperation( "FactorSemigroup",
[ IsSemigroup, IsSemigroupCongruence ] );
DeclareOperation( "FactorSemigroupByClosure",
[ IsSemigroup, IsList ] );
#############################################################################
##
#O IsRegularSemigroupElement( <S>, <x> )
##
## returns `true' if <x> has a general inverse in <S>---i.e. there is an
## element $y\in S$ such that $xyx=x$ and $yxy=y$.
##
DeclareOperation("IsRegularSemigroupElement", [IsSemigroup,
IsAssociativeElement]);
#############################################################################
##
#P IsRegularSemigroup( <S> )
##
## returns `true' if <S> is regular---i.e. if every D class of <S> is regular.
##
DeclareProperty("IsRegularSemigroup", IsSemigroup);
#############################################################################
##
#M IsInverseSemigroup( <S> );
## <#GAPDoc Label="IsInverseSemigroup">
## <ManSection>
## <Prop Name="IsInverseSemigroup" Arg='S'/>
##
## <Description>
## returns <K>true</K> if <A>S</A> is an inverse semigroup---i.e. if every element of <A>S</A> has a unique (semigroup) inverse.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty("IsInverseSemigroup", IsSemigroup);
#############################################################################
##
#O DisplaySemigroup( <S> )
##
## Produces a convenient display of a semigroup's DClass
## structure. Let <S> have degree $n$. Then for each $r\leq n$, we
## show all D classes of rank $n$.
##
## A regular D class with a single H class of size 120 appears as
## \beginexample
## *[H size = 120, 1 L classes, 1 R classes]
## \endexample
## (the \* denoting regularity).
##
##
DeclareOperation("DisplaySemigroup",
[IsSemigroup]);
#############################################################################
##
#E
|