File: semitran.gd

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (82 lines) | stat: -rw-r--r-- 2,987 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#############################################################################
##
#W  semitran.gd           GAP library         Isabel Araujo and Robert Arthur 
##
#H  @(#)$Id: semitran.gd,v 4.8.2.1 2004/02/20 16:40:38 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for basics of transformation semigroup 

Revision.semitran_gd :=
    "@(#)$Id: semitran.gd,v 4.8.2.1 2004/02/20 16:40:38 gap Exp $";

#############################################################################
##
#P  IsTransformationSemigroup( <obj> )
#P  IsTransformationMonoid( <obj> )
##
##	A transformation semigroup (resp. monoid) is a subsemigroup
##	(resp. submonoid) of the full transformation monoid.
##	Note that for a transformation semigroup to be a transformation monoid
##	we necessarily require the identity transformation to be an element.
##
DeclareSynonymAttr("IsTransformationSemigroup", IsSemigroup and
	IsTransformationCollection);
DeclareProperty("IsTransformationMonoid", IsTransformationSemigroup);

#############################################################################
##
#P  IsFullTransformationSemigroup(<obj>)
##
DeclareProperty("IsFullTransformationSemigroup", IsSemigroup);

#############################################################################
##
#F  FullTransformationSemigroup(<degree>)
##
##  Returns the full transformation semigroup of degree <degree>.
##  
DeclareGlobalFunction("FullTransformationSemigroup");

#############################################################################
##
#A  DegreeOfTransformationSemigroup( <S> )
##
##	The number of points the semigroup acts on.
DeclareAttribute("DegreeOfTransformationSemigroup",
	IsTransformationSemigroup);

############################################################################
##
#A  IsomorphismTransformationSemigroup(<S>)
#O  HomomorphismTransformationSemigroup(<S>,<r>)
##
##
##  IsomorphismTransformationSemigroup is a generic attribute which 
##  is a transformation semigroup isomorphic to <S> (if such can 
##  be computed). In the case of an fp- semigroup, a todd-coxeter
##  will be attempted. For a semigroup of endomorphisms of a finite 
##  domain of <n> elements, it will be to a semigroup of transformations
##  of $\{1, \ldots, n\}$. Otherwise, it will be the right regular 
##  representation on $S$ or $S^1$ if $S$ has no 
##  MultiplicativeNeutralElement.
##
##  HomomorphismTransformationSemigroup
##  finds a representation of <S> as transformations of the set of
##  equivalence classes of the right congruence <r>.
##

DeclareAttribute("IsomorphismTransformationSemigroup",
  IsSemigroup);

DeclareOperation("HomomorphismTransformationSemigroup",
  [IsSemigroup,IsRightMagmaCongruence]);


#############################################################################
##
#E