File: arithlst.tst

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (833 lines) | stat: -rw-r--r-- 29,110 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
#############################################################################
##
#W  arithlst.tst                GAP library                     Thomas Breuer
##
#H  @(#)$Id: arithlst.tst,v 1.15.4.4 2006/03/06 12:34:24 sal Exp $
##
#Y  Copyright (C)  2000,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
##
##  Exclude from testall.g because it runs too long.
##

gap> START_TEST("$Id: arithlst.tst,v 1.15.4.4 2006/03/06 12:34:24 sal Exp $");


#############################################################################
##
##  Parametrize the output; if `error' has the value `Error' then only the
##  first error in each call is printed in the `ReadTest' run,
##  if the value is `Print' then all errors are printed.
##
gap> error:= Print;;


#############################################################################
##
##  Define auxiliary functions.
##

gap> RandomSquareArray := function( dim, D )
>   return List( [ 1 .. dim ], i -> List( [ 1 .. dim ], j -> Random( D ) ) );
> end;;

gap> NestingDepthATest := function( obj )
>   if not IsGeneralizedRowVector( obj ) then
>     return 0;
>   elif IsEmpty( obj ) then
>     return 1;
>   else
>     return 1 + NestingDepthATest( obj[ PositionBound( obj ) ] );
>   fi;
> end;;

gap> NestingDepthMTest := function( obj )
>   if not IsMultiplicativeGeneralizedRowVector( obj ) then
>     return 0;
>   elif IsEmpty( obj ) then
>     return 1;
>   else
>     return 1 + NestingDepthMTest( obj[ PositionBound( obj ) ] );
>   fi;
> end;;

gap> ImmutabilityLevel2 := function( list )
>   if not IsList( list ) then
>     if IsMutable( list ) then
>       Error( "<list> is not a list" );
>     else
>       return 0;
>     fi;
>   elif IsEmpty( list ) then
>     # The empty list is defined to have immutability level 0.
>     return 0;
>   elif IsMutable( list ) then
>     return ImmutabilityLevel2( list[ PositionBound( list ) ] );
>   else
>     return 1 + ImmutabilityLevel2( list[ PositionBound( list ) ] );
>   fi;
> end;;

gap> ImmutabilityLevel := function( list )
>   if IsMutable( list ) then
>     return ImmutabilityLevel2( list );
>   else
>     return infinity;
>   fi;
> end;;


##  Note that the two-argument version of `List' is defined only for
##  dense lists.

gap> ListWithPrescribedHoles := function( list, func )
>   local result, i;
> 
>   result:= [];
>   for i in [ 1 .. Length( list ) ] do
>     if IsBound( list[i] ) then
>       result[i]:= func( list[i] );
>     fi;
>   od;
>   return result;
> end;;


gap> SumWithHoles := function( list )
>   local pos, result, i;
> 
>   pos:= PositionBound( list );
>   result:= list[ pos ];
>   for i in [ pos+1 .. Length( list ) ] do
>     if IsBound( list[i] ) then
>       result:= result + list[i];
>     fi;
>   od;
>   return result;
> end;;


gap> ParallelOp := function( op, list1, list2, mode )
>   local result, i;
> 
>   result:= [];
>   for i in [ 1 .. Maximum( Length( list1 ), Length( list2 ) ) ] do
>     if IsBound( list1[i] ) then
>       if IsBound( list2[i] ) then
>         result[i]:= op( list1[i], list2[i] );
>       elif mode = "one" then
>         result[i]:= ShallowCopy( list1[i] );
>       fi;
>     elif IsBound( list2[i] ) and mode = "one" then
>       result[i]:= ShallowCopy( list2[i] );
>     fi;
>   od;
>   return result;
> end;;


gap> ErrorMessage := function( opname, operands, info, is, should )
>   local str, i;
> 
>   str:= Concatenation( opname, "( " );
>   for i in [ 1 .. Length( operands ) - 1 ] do
>     Append( str, operands[i] );
>     Append( str, ", " );
>   od;
>   error( str, operands[ Length( operands ) ], " ):  ", info, ",\n",
>          "should be ", should, " but is ", is, "\n" );
> end;;


gap> CheckMutabilityStatus := function( opname, list )
>   local attr, op, val, sm;
> 
>   attr:= ValueGlobal( Concatenation( opname, "Attr" ) );
>   if ImmutabilityLevel( attr( list ) ) <> infinity then
>     error( opname, "Attr: mutability problem for ", list,
>            " (", ImmutabilityLevel( list ), ")\n" );
>   fi;
>   op:= ValueGlobal( Concatenation( opname, "Op" ) );
>   val:= op( list );
>   if val <> fail and IsCopyable( val ) and not IsMutable( val ) then
>     error( opname, "Op: mutability problem for ", list,
>            " (", ImmutabilityLevel( list ), ")\n" );
>   fi;
>   sm:= ValueGlobal( Concatenation( opname, "SM" ) );
>   val:= sm( list );
>   if     val <> fail
>      and IsCopyable( val )
>      and ImmutabilityLevel( sm( list ) ) <> ImmutabilityLevel( list ) then
>     error( opname, "SM: mutability problem for ", list,
>            " (", ImmutabilityLevel( list ), ")\n" );
>   fi;
> end;;


##  Check whether a unary operation preserves the compression status.

gap> COMPRESSIONS := [ "Is8BitMatrixRep", "Is8BitVectorRep",
>                      "IsGF2VectorRep", "IsGF2MatrixRep" ];;

gap> CheckCompressionStatus := function( opname, list )
>   local value, namefilter, filter;
> 
>   value:= ValueGlobal( opname )( list );
>   if value <> fail then
>     for namefilter in COMPRESSIONS do
>       filter:= ValueGlobal( namefilter );
>       if filter( list ) and not filter( value ) then
>         error( opname, " does not preserve `", namefilter, "'\n" );
>       fi;
>     od;
>   fi;
> end;;


gap> CompareTest := function( opname, operands, result, desired )
>   local i, j, val;
> 
>   # Check that the same positions are bound,
>   # and that corresponding entries are equal.
>   if IsList( result ) and IsList( desired ) then
>     if Length( result ) <> Length( desired ) then
>       ErrorMessage( opname, operands, "lengths differ",
>                     Length( result ), Length( desired ) );
>     fi;
>     for i in [ 1 .. Length( result ) ] do
>       if IsBound( result[i] ) then
>         if not IsBound( desired[i] ) then
>           ErrorMessage( opname, operands,
>                         Concatenation( "bound at ", String( i ) ),
>                         result[i], "unbound" );
>         elif result[i] <> desired[i] then
>           ErrorMessage( opname, operands,
>                         Concatenation( "error at ", String( i ) ),
>                         result[i], desired[i] );
>         fi;
>       elif IsBound( desired[i] ) then
>           ErrorMessage( opname, operands,
>                         Concatenation( "unbound at ", String( i ) ),
>                         "unbound", desired[i] );
>       fi;
>     od;
>   elif IsList( result ) or IsList( desired ) then
>     ErrorMessage( opname, operands, "list vs. non-list", result, desired );
>   elif result <> desired then
>     ErrorMessage( opname, operands, "two non-lists", result, desired );
>   fi;
> 
>   # Check the mutability status.
>   if     Length( operands ) = 2
>      and IsList( result ) and IsCopyable( result )
>      and ImmutabilityLevel( result )
>          <> Minimum( List( operands, ImmutabilityLevel ) ) 
>      and not (ImmutabilityLevel(result)=infinity and
>                NestingDepthM(result) = 
>                       Minimum( List( operands, ImmutabilityLevel ) )) then
>     error( opname, ": mutability problem for ", operands[1], " (",
>            ImmutabilityLevel( operands[1] ), ") and ", operands[2], " (",
>            ImmutabilityLevel( operands[2] ), ")\n" );
>   fi;
> end;;


#############################################################################
##
#F  ZeroTest( <list> )
##
##  The zero of a list $x$ in `IsGeneralizedRowVector' is defined as
##  the list whose entry at position $i$ is the zero of $x[i]$
##  if this entry is bound, and is unbound otherwise.
##
gap> ZeroTest := function( list )
>   if IsGeneralizedRowVector( list ) then
>     CompareTest( "Zero", [ list ],
>                  Zero( list ),
>                  ListWithPrescribedHoles( list, Zero ) );
>     CheckMutabilityStatus( "Zero", list );
>     CheckCompressionStatus( "ZeroAttr", list );
>     CheckCompressionStatus( "ZeroSM", list );
>   fi;
> end;;


#############################################################################
##
#F  AdditiveInverseTest( <list> )
##
##  The additive inverse of a list $x$ in `IsGeneralizedRowVector' is defined
##  as the list whose entry at position $i$ is the additive inverse of $x[i]$
##  if this entry is bound, and is unbound otherwise.
##
gap> AdditiveInverseTest := function( list )
>   if IsGeneralizedRowVector( list ) then
>     CompareTest( "AdditiveInverse", [ list ],
>                  AdditiveInverse( list ),
>                  ListWithPrescribedHoles( list, AdditiveInverse ) );
>     CheckMutabilityStatus( "AdditiveInverse", list );
>     CheckCompressionStatus( "AdditiveInverseAttr", list );
>     CheckCompressionStatus( "AdditiveInverseSM", list );
>   fi;
> end;;


#############################################################################
##
#F  AdditionTest( <left>, <right> )
##
##  If $x$ and $y$ are in `IsGeneralizedRowVector' and have the same
##  additive nesting depth (see~"NestingDepthA"),
##  % By definition, this depth is nonzero.
##  the sum $x + y$ is defined *pointwise*, in the sense that the result is a
##  list whose entry at position $i$ is $x[i] + y[i]$ if these entries are
##  bound,
##  is a shallow copy (see~"ShallowCopy") of $x[i]$ or $y[i]$ if the other
##  argument is not bound at position $i$,
##  and is unbound if both $x$ and $y$ are unbound at position $i$.
##
##  If $x$ is in `IsGeneralizedRowVector' and $y$ is either not a list or is
##  in `IsGeneralizedRowVector' and has lower additive nesting depth,
##  the sum $x + y$ is defined as a list whose entry at position $i$ is
##  $x[i] + y$ if $x$ is bound at position $i$, and is unbound if not.
##  The equivalent holds in the reversed case,
##  where the order of the summands is kept,
##  as addition is not always commutative.
##
##  For two {\GAP} objects $x$ and $y$ of which one is in
##  `IsGeneralizedRowVector' and the other is either not a list or is
##  also in `IsGeneralizedRowVector',
##  $x - y$ is defined as $x + (-y)$.
##
gap> AdditionTest := function( left, right )
>   local depth1, depth2, desired;
> 
>   if IsGeneralizedRowVector( left ) and IsGeneralizedRowVector( right ) then
>     depth1:= NestingDepthATest( left );
>     depth2:= NestingDepthATest( right );
>     if depth1 = depth2 then
>       desired:= ParallelOp( \+, left, right, "one" );
>     elif depth1 < depth2 then
>       desired:= ListWithPrescribedHoles( right, x -> left + x );
>     else
>       desired:= ListWithPrescribedHoles( left, x -> x + right );
>     fi;
>   elif IsGeneralizedRowVector( left ) and not IsList( right ) then
>     desired:= ListWithPrescribedHoles( left, x -> x + right );
>   elif not IsList( left ) and IsGeneralizedRowVector( right ) then
>     desired:= ListWithPrescribedHoles( right, x -> left + x );
>   else
>     return;
>   fi;
>   CompareTest( "Addition", [ left, right ], left + right, desired );
>   if AdditiveInverse( right ) <> fail then
>     CompareTest( "Subtraction", [ left, right ], left - right,
>                  left + ( - right ) );
>   fi;
> end;;


#############################################################################
##
#F  OneTest( <list> )
##
gap> OneTest := function( list )
>   if IsOrdinaryMatrix( list ) and Length( list ) = Length( list[1] ) then
>     CheckMutabilityStatus( "One", list );
>     CheckCompressionStatus( "OneAttr", list );
>     CheckCompressionStatus( "OneSM", list );
>   fi;
> end;;


#############################################################################
##
#F  InverseTest( <obj> )
##
gap> InverseTest := function( list )
>   if IsOrdinaryMatrix( list ) and Length( list ) = Length( list[1] ) then
>     CheckMutabilityStatus( "Inverse", list );
>     CheckCompressionStatus( "InverseAttr", list );
>     CheckCompressionStatus( "InverseSM", list );
>   fi;
> end;;


#############################################################################
##
#F  TransposedMatTest( <obj> )
##
gap> TransposedMatTest := function( list )
>   if IsOrdinaryMatrix( list ) then
>     CheckCompressionStatus( "TransposedMatAttr", list );
>     CheckCompressionStatus( "TransposedMatOp", list );
>   fi;
> end;;


#############################################################################
##
#F  MultiplicationTest( <left>, <right> )
##
##  There are three possible computations that might be triggered by a
##  multiplication involving a list in
##  `IsMultiplicativeGeneralizedRowVector'.
##  Namely, $x * y$ might be
##  \beginlist
##  \item{(I)}
##      the inner product $x[1] * y[1] + x[2] * y[2] + \cdots + x[n] * y[n]$,
##      where summands are omitted for which the entry in $x$ or $y$ is
##      unbound
##      (if this leaves no summand then the multiplication is an error),
##      or
##  \item{(L)}
##      the left scalar multiple, i.e., a list whose entry at position $i$ is
##      $x * y[i]$ if $y$ is bound at position $i$, and is unbound if not, or
##  \item{(R)}
##      the right scalar multiple, i.e., a list whose entry at position $i$
##      is $x[i] * y$ if $x$ is bound at position $i$, and is unbound if not.
##  \endlist
##  
##  Our aim is to generalize the basic arithmetic of simple row vectors and
##  matrices, so we first summarize the situations that shall be covered.
##  
##  \beginexample
##      | scl   vec   mat
##  ---------------------
##  scl |       (L)   (L)
##  vec | (R)   (I)   (I)
##  mat | (R)   (R)   (R)
##  \endexample
##  
##  This means for example that the product of a scalar (scl)
##  with a vector (vec) or a matrix (mat) is computed according to (L).
##  Note that this is asymmetric.
##  
##  Now we can state the general multiplication rules.
##  
##  If exactly one argument is in `IsMultiplicativeGeneralizedRowVector'
##  then we regard the other argument (which is then not a list) as a scalar,
##  and specify result (L) or (R), depending on ordering.
##  
##  In the remaining cases, both $x$ and $y$ are in
##  `IsMultiplicativeGeneralizedRowVector', and we distinguish the
##  possibilities by their multiplicative nesting depths.
##  An argument with *odd* multiplicative nesting depth is regarded as a
##  vector, and an argument with *even* multiplicative nesting depth is
##  regarded as a scalar or a matrix.
##  
##  So if both arguments have odd multiplicative nesting depth,
##  we specify result (I).
##  
##  If exactly one argument has odd nesting depth,
##  the other is treated as a scalar if it has lower multiplicative nesting
##  depth, and as a matrix otherwise.
##  In the former case, we specify result (L) or (R), depending on ordering;
##  in the latter case, we specify result (L) or (I), depending on ordering.
##  
##  We are left with the case that each argument has even multiplicative
##  nesting depth.
##  % By definition, this depth is nonzero.
##  If the two depths are equal, we treat the computation as a matrix product,
##  and specify result (R).
##  Otherwise, we treat the less deeply nested argument as a scalar and the
##  other as a matrix, and specify result (L) or (R), depending on ordering.
##  
##  For two {\GAP} objects $x$ and $y$ of which one is in
##  `IsMultiplicativeGeneralizedRowVector' and the other is either not a list
##  or is also in `IsMultiplicativeGeneralizedRowVector',
##  $x / y$ is defined as $x * y^{-1}$.
##
gap> MultiplicationTest := function( left, right )
>   local depth1, depth2, par, desired;
> 
>   if IsMultiplicativeGeneralizedRowVector( left ) and
>      IsMultiplicativeGeneralizedRowVector( right ) then
>     depth1:= NestingDepthMTest( left );
>     depth2:= NestingDepthMTest( right );
>     if IsOddInt( depth1 ) then
>       if IsOddInt( depth2 ) or depth1 < depth2 then
>         # <vec> * <vec> or <vec> * <mat>
>         par:= ParallelOp( \*, left, right, "both" );
>         if IsEmpty( par ) then
>           error( "vector multiplication <left>*<right> with empty ",
>                  "support:\n", left, "\n", right, "\n" );
>         else
>           desired:= SumWithHoles( par );
>         fi;
>       else
>         # <vec> * <scl>
>         desired:= ListWithPrescribedHoles( left, x -> x * right );
>       fi;
>     elif IsOddInt( depth2 ) then
>       if depth1 < depth2 then
>         # <scl> * <vec>
>         desired:= ListWithPrescribedHoles( right, x -> left * x );
>       else
>         # <mat> * <vec>
>         desired:= ListWithPrescribedHoles( left, x -> x * right );
>       fi;
>     elif depth1 = depth2 then
>       # <mat> * <mat>
>       desired:= ListWithPrescribedHoles( left, x -> x * right );
>     elif depth1 < depth2 then
>       # <scl> * <mat>
>       desired:= ListWithPrescribedHoles( right, x -> left * x );
>     else
>       # <mat> * <scl>
>       desired:= ListWithPrescribedHoles( left, x -> x * right );
>     fi;
>   elif IsMultiplicativeGeneralizedRowVector( left ) and
>        not IsList( right ) then
>     desired:= ListWithPrescribedHoles( left, x -> x * right );
>   elif IsMultiplicativeGeneralizedRowVector( right ) and
>        not IsList( left ) then
>     desired:= ListWithPrescribedHoles( right, x -> left * x );
>   else
>     return;
>   fi;
>   CompareTest( "Multiplication", [ left, right ], left * right, desired );
>   if     IsMultiplicativeGeneralizedRowVector( right )
>      and IsOrdinaryMatrix( right )
>      and Length( right ) = Length( right[1] )
>      and NestingDepthM( right ) = 2
>      and Inverse( right ) <> fail then
>     CompareTest( "Division", [ left, right ], left / right,
>                  left * ( right^-1 ) );
>   fi;
> end;;


#############################################################################
##
#F  RunTest( <func>, <arg1>, ... )
##
##  Call <func> for the remaining arguments, or for shallow copies of them
##  or immutable copies.
##
gap> RunTest := function( arg )
>   local combinations, i, entry;
> 
>   combinations:= [ ];
>   for i in [ 2 .. Length( arg ) ] do
>     entry:= [ arg[i] ];
>     if IsCopyable( arg[i] ) then
>       Add( entry, ShallowCopy( arg[i] ) );
>     fi;
>     if IsMutable( arg[i] ) then
>       Add( entry, Immutable( arg[i] ) );
>     fi;
>     Add( combinations, entry );
>   od;
>   for entry in Cartesian( combinations ) do
>     CallFuncList( arg[1], entry );
>   od;
> end;;


#############################################################################
##
#F  TestOfAdditiveListArithmetic( <R>, <dim> )
##
##  For a ring or list of ring elements <R> (such that `Random( <R> )'
##  returns an element in <R> and such that not all elements in <R> are
##  zero),
##  `TestOfAdditiveListArithmetic' performs the following tests of additive
##  arithmetic operations.
##  \beginlist
##  \item{1.}
##      If the elements of <R> are in `IsGeneralizedRowVector' then
##      it is checked whether `Zero', `AdditiveInverse', and `\+'
##      obey the definitions.
##  \item{2.}
##      If the elements of <R> are in `IsGeneralizedRowVector' then
##      it is checked whether the sum of elements in <R> and (non-dense)
##      plain lists of integers obeys the definitions.
##  \item{3.}
##      Check `Zero' and `AdditiveInverse' for nested plain lists of elements
##      in <R>, and `\+' for elements in <R> and nested plain lists of
##      elements in <R>.
##  \endlist
##
gap> TestOfAdditiveListArithmetic := function( R, dim )
>   local r, i, intlist, j, vec1, vec2, mat1, mat2, row;
> 
>   r:= Random( R );
>   if IsGeneralizedRowVector( r ) then
> 
>     # tests of kind 1.
>     for i in [ 1 .. 10 ] do
>       RunTest( ZeroTest, Random( R ) );
>       RunTest( AdditiveInverseTest, Random( R ) );
>       RunTest( AdditionTest, Random( R ), Random( R ) );
>     od;
> 
>     # tests of kind 2.
>     for i in [ 1 .. 10 ] do
>       RunTest( AdditionTest, Random( R ), [] );
>       RunTest( AdditionTest, [], Random( R ) );
>       r:= Random( R );
>       intlist:= List( [ 1 .. Length( r ) + Random( [ -1 .. 1 ] ) ],
>                       x -> Random( Integers ) );
>       for j in [ 1 .. Int( Length( r ) / 3 ) ] do
>         Unbind( intlist[ Random( [ 1 .. Length( intlist ) ] ) ] );
>       od;
>       RunTest( AdditionTest, r, intlist );
>       RunTest( AdditionTest, intlist, r );
>     od;
> 
>   fi;
> 
>   # tests of kind 3.
>   for i in [ 1 .. 10 ] do
> 
>     vec1:= List( [ 1 .. dim ], x -> Random( R ) );
>     vec2:= List( [ 1 .. dim ], x -> Random( R ) );
> 
>     RunTest( ZeroTest, vec1 );
>     RunTest( AdditiveInverseTest, vec1 );
>     RunTest( AdditionTest, vec1, Random( R ) );
>     RunTest( AdditionTest, Random( R ), vec2 );
>     RunTest( AdditionTest, vec1, vec2 );
>     RunTest( AdditionTest, vec1, [] );
>     RunTest( AdditionTest, [], vec2 );
>     Unbind( vec1[ dim ] );
>     RunTest( AdditionTest, vec1, vec2 );
>     Unbind( vec2[ Random( [ 1 .. dim ] ) ] );
>     RunTest( ZeroTest, vec2 );
>     RunTest( AdditiveInverseTest, vec1 );
>     RunTest( AdditiveInverseTest, vec2 );
>     RunTest( AdditionTest, vec1, vec2 );
>     Unbind( vec1[ Random( [ 1 .. dim ] ) ] );
>     RunTest( AdditionTest, vec1, vec2 );
> 
>     mat1:= RandomSquareArray( dim, R );
>     mat2:= RandomSquareArray( dim, R );
> 
>     RunTest( ZeroTest, mat1 );
>     RunTest( AdditiveInverseTest, mat1 );
>     RunTest( TransposedMatTest, mat1 );
>     RunTest( AdditionTest, mat1, Random( R ) );
>     RunTest( AdditionTest, Random( R ), mat2 );
>     RunTest( AdditionTest, vec1, mat2 );
>     RunTest( AdditionTest, mat1, vec2 );
>     RunTest( AdditionTest, mat1, mat2 );
>     RunTest( AdditionTest, mat1, [] );
>     RunTest( AdditionTest, [], mat2 );
>     Unbind( mat1[ dim ] );
>     row:= mat1[ Random( [ 1 .. dim-1 ] ) ];
>     if not IsLockedRepresentationVector( row ) then
>       Unbind( row[ Random( [ 1 .. dim ] ) ] );
>     fi;
>     RunTest( AdditionTest, mat1, mat2 );
>     Unbind( mat2[ Random( [ 1 .. dim ] ) ] );
>     RunTest( ZeroTest, mat2 );
>     RunTest( AdditiveInverseTest, mat1 );
>     RunTest( AdditiveInverseTest, mat2 );
>     RunTest( TransposedMatTest, mat2 );
>     RunTest( AdditionTest, mat1, mat2 );
>     Unbind( mat1[ Random( [ 1 .. dim ] ) ] );
>     RunTest( AdditionTest, mat1, mat2 );
> 
>   od;
> end;;


#############################################################################
##
#F  TestOfMultiplicativeListArithmetic( <R>, <dim> )
##
##  For a ring or list of ring elements <R> (such that `Random( <R> )'
##  returns an element in <R> and such that not all elements in <R> are
##  zero),
##  `TestOfMultiplicativeListArithmetic' performs the following tests of
##  multiplicative arithmetic operations.
##  \beginlist
##  \item{1.}
##      If the elements of <R> are in `IsMultiplicativeGeneralizedRowVector'
##      then it is checked whether `One', `Inverse', and `\*'
##      obey the definitions.
##  \item{2.}
##      If the elements of <R> are in `IsMultiplicativeGeneralizedRowVector'
##      then it is checked whether the product of elements in <R> and
##      (non-dense) plain lists of integers obeys the definitions.
##      (Note that contrary to the additive case, we need not chack the
##      special case of a multiplication with an empty list.)
##  \item{3.}
##      Check `One' and `Inverse' for nested plain lists of elements
##      in <R>, and `\*' for elements in <R> and nested plain lists of
##      elements in <R>.
##  \endlist
##
gap> TestOfMultiplicativeListArithmetic := function( R, dim )
>   local r, i, intlist, j, vec1, vec2, mat1, mat2, row;
> 
>   r:= Random( R );
>   if IsMultiplicativeGeneralizedRowVector( r ) then
> 
>     # tests of kind 1.
>     for i in [ 1 .. 10 ] do
>       RunTest( OneTest, Random( R ) );
>       RunTest( InverseTest, Random( R ) );
>       RunTest( MultiplicationTest, Random( R ), Random( R ) );
>     od;
> 
>     # tests of kind 2.
>     for i in [ 1 .. 10 ] do
>       r:= Random( R );
>       intlist:= List( [ 1 .. Length( r ) + Random( [ -1 .. 1 ] ) ],
>                       x -> Random( Integers ) );
>       for j in [ 1 .. Int( Length( r ) / 3 ) ] do
>         Unbind( intlist[ Random( [ 1 .. Length( intlist ) ] ) ] );
>       od;
>       RunTest( MultiplicationTest, r, intlist );
>       RunTest( MultiplicationTest, intlist, r );
>     od;
> 
>   fi;
> 
>   # tests of kind 3.
>   for i in [ 1 .. 10 ] do
> 
>     vec1:= List( [ 1 .. dim ], x -> Random( R ) );
>     vec2:= List( [ 1 .. dim ], x -> Random( R ) );
> 
>     RunTest( OneTest, vec1 );
>     RunTest( InverseTest, vec1 );
>     RunTest( MultiplicationTest, vec1, Random( R ) );
>     RunTest( MultiplicationTest, Random( R ), vec2 );
>     RunTest( MultiplicationTest, vec1, vec2 );
>     Unbind( vec1[ dim ] );
>     RunTest( MultiplicationTest, vec1, vec2 );
>     Unbind( vec2[ Random( [ 1 .. dim ] ) ] );
>     RunTest( OneTest, vec2 );
>     RunTest( InverseTest, vec1 );
>     RunTest( InverseTest, vec2 );
>     RunTest( MultiplicationTest, vec1, vec2 );
>     Unbind( vec1[ Random( [ 1 .. dim ] ) ] );
>     RunTest( MultiplicationTest, vec1, vec2 );
> 
>     mat1:= RandomSquareArray( dim, R );
>     mat2:= RandomSquareArray( dim, R );
> 
>     RunTest( OneTest, mat1 );
>     RunTest( InverseTest, mat1 );
>     RunTest( MultiplicationTest, mat1, Random( R ) );
>     RunTest( MultiplicationTest, Random( R ), mat2 );
>     RunTest( MultiplicationTest, vec1, mat2 );
>     RunTest( MultiplicationTest, mat1, vec2 );
>     RunTest( MultiplicationTest, mat1, mat2 );
>     Unbind( mat1[ dim ] );
>     row:= mat1[ Random( [ 1 .. dim-1 ] ) ];
>     if not IsLockedRepresentationVector( row ) then
>       Unbind( row[ Random( [ 1 .. dim ] ) ] );
>     fi;
>     RunTest( MultiplicationTest, vec1, mat2 );
>     RunTest( MultiplicationTest, mat1, vec2 );
>     RunTest( MultiplicationTest, mat1, mat2 );
>     Unbind( mat2[ Random( [ 1 .. dim ] ) ] );
>     RunTest( OneTest, mat2 );
>     RunTest( InverseTest, mat1 );
>     RunTest( InverseTest, mat2 );
>     RunTest( MultiplicationTest, mat1, mat2 );
>     Unbind( mat1[ Random( [ 1 .. dim ] ) ] );
>     RunTest( MultiplicationTest, mat1, mat2 );
> 
>   od;
> end;;


#############################################################################
##
#F  TestOfListArithmetic( <R>, <dimlist> )
##
gap> TestOfListArithmetic := function( R, dimlist )
>   local n, len, bools, i;
> 
>   len:= 100;
>   bools:= [ true, false ];
> 
>   for n in dimlist do
>     TestOfAdditiveListArithmetic( R, n );
>     TestOfMultiplicativeListArithmetic( R, n );
>     R:= List( [ 1 .. len ], x -> Random( R ) );
>     if IsMutable( R[1] ) and not ForAll( R, IsZero ) then
>       for i in [ 1 .. len ] do
>         if Random( bools ) then
>           R[i]:= Immutable( R[i] );
>         fi;
>       od;
>       TestOfAdditiveListArithmetic( R, n );
>       TestOfMultiplicativeListArithmetic( R, n );
>     fi;
>   od;
> end;;


#############################################################################
##
##  Here the tests start.
##  (The dimension should always be at least 4,
##  in order to avoid errors in inner products of non-dense lists.)
##

# over `GF(2)', `GF(3)', `GF(4)' (compressed elements)
gap> stddims:= [ 4, 5, 6, 8, 17, 32, 33 ];;
gap> TestOfListArithmetic( GF(2), stddims );
gap> TestOfListArithmetic( GF(3), stddims );
gap> TestOfListArithmetic( GF(4), stddims );

# over another small finite field (compressed elements)
gap> TestOfListArithmetic( GF(25), stddims );

# over a big finite (prime) field
gap> p:= NextPrimeInt( MAXSIZE_GF_INTERNAL );;
gap> TestOfListArithmetic( GF( p ), stddims );

# over the rationals
gap> TestOfListArithmetic( Rationals, [ 4 ] );

# over a residue class ring
gap> TestOfListArithmetic( Integers mod 12, [ 4 ] );

# over a ring of non-internal objects
gap> A:= QuaternionAlgebra( Rationals );;
gap> TestOfListArithmetic( A, [ 4 ] );

# over a matrix space/algebra over `GF(2)' (compressed elements)
gap> TestOfListArithmetic( GF(2)^[2,3], [ 4, 5, 6 ] );

# over a matrix space/algebra over another small finite field
# (compressed elements)
gap> TestOfListArithmetic( GF(5)^[2,3], [ 4, 5, 6 ] );

# over a matrix space/algebra over a big finite (prime) field
gap> p:= NextPrimeInt( MAXSIZE_GF_INTERNAL );;
gap> TestOfListArithmetic( GF( p )^[2,3], [ 4, 5, 6 ] );

# over a matrix space/algebra over the rationals
gap> TestOfListArithmetic( Rationals^[2,3], [ 4, 5, 6 ] );

# over a class function space (the elements are not mult. grvs)
gap> TestOfAdditiveListArithmetic( Irr( SymmetricGroup( 4 ) ), 4 );

# over a space of Lie matrices (the elements are not mult. grvs)
gap> TestOfAdditiveListArithmetic( LieAlgebra( GF(3)^[2,2] ), 4 );

# # over a group of block matrices
# gap> hom:= IrreducibleRepresentations( SymmetricGroup( 4 ) )[3];;
# gap> ind:= InducedRepresentation( hom, SymmetricGroup( 5 ) );;
# gap> blockmats:= Elements( Image( ind ) );;
# gap> # Note that `Random' for the matrix group would construct a matrix
# gap> # via the homomorphism to a perm. group, and this would not be a
# gap> # block matrix!
# gap> TestOfAdditiveListArithmetic( blockmats, 4 );
# gap> TestOfMultiplicativeListArithmetic( blockmats, 4 );


gap> STOP_TEST( "arithlst.tst", 400564100000 );


#############################################################################
##
#E