File: ctblmono.tst

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (122 lines) | stat: -rw-r--r-- 4,184 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#############################################################################
##
#W  ctblmono.tst               GAP Library                      Thomas Breuer
#W                                                         & Erzsebet Horvath
##
#H  @(#)$Id: ctblmono.tst,v 4.13.2.4 2005/12/15 10:53:30 jjm Exp $
##
#Y  Copyright (C)  1998,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
##
##  To be listed in testall.g
##

gap> START_TEST("$Id: ctblmono.tst,v 4.13.2.4 2005/12/15 10:53:30 jjm Exp $");

gap> S4:= SymmetricGroup( 4 );;  SetName( S4, "S4");
gap> Sl23:= SL( 2, 3 );;

gap> Alpha( Sl23 );
[ 1, 3, 3 ]
gap> Alpha( S4 );
[ 1, 2, 3 ]
gap> Delta( Sl23 );
[ 1, 2, 0 ]
gap> Delta( S4 );
[ 1, 1, 1 ]
gap> IsBergerCondition( S4 );
true
gap> IsBergerCondition( Sl23 );
false
gap> List( Irr( Sl23 ), IsBergerCondition );
[ true, true, true, false, false, false, true ]
gap> List( Irr( Sl23 ), Degree );
[ 1, 1, 1, 2, 2, 2, 3 ]

gap> n:= DerivedSubgroup( Sl23 );;      
gap> chi:= Irr( Sl23 )[7];
Character( CharacterTable( SL(2,3) ), [ 3, 0, 0, 3, 0, 0, -1 ] )
gap> test:= TestHomogeneous( chi, n );;
gap> test.isHomogeneous;  test.comment;  test.multiplicity;
false
"restriction checked"
1
gap> chi:= Irr( Sl23 )[4];
Character( CharacterTable( SL(2,3) ), [ 2, 1, 1, -2, -1, -1, 0 ] )
gap> cln:= ClassPositionsOfNormalSubgroup( CharacterTable( Sl23 ), n );
[ 1, 4, 7 ]
gap> TestHomogeneous( chi, cln );
rec( isHomogeneous := true, comment := "restricts irreducibly" )
gap> chi:= Irr( Sl23 )[4];;
gap> TestQuasiPrimitive( chi );
rec( isQuasiPrimitive := true, comment := "all restrictions checked" )
gap> chi:= Irr( Sl23 )[7];;
gap> test:= TestQuasiPrimitive( chi );;
gap> test.isQuasiPrimitive;  test.comment;
false
"restriction checked"
gap> IsPrimitive( Irr( Sl23 )[4] );
true
gap> IsPrimitive( Irr( Sl23 )[7] );
false
gap> List( Irr( Sl23 ), IsInducedFromNormalSubgroup );
[ false, false, false, false, false, false, true ]
gap> List( Irr( S4 ){ [ 1, 3, 4 ] },
>          TestInducedFromNormalSubgroup );
[ rec( isInduced := false, comment := "linear character" ), 
  rec( isInduced := true, comment := "induced from component '.character'", 
      character := Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), 
        [ 1, 1, E(3)^2, E(3) ] ) ), 
  rec( isInduced := false, comment := "all maximal normal subgroups checked" 
     ) ]
gap> TestMonomial( S4 );
rec( isMonomial := true, comment := "abelian by supersolvable group" )
gap> TestMonomial( Sl23 );
rec( isMonomial := false, comment := "list Delta( G ) contains entry > 1" )
gap> Filtered( [ 1 .. 111 ], x -> not IsMonomial( x ) );
[ 24, 48, 72, 96, 108 ]
gap> TestMonomialQuick( Irr( S4 )[3] );
rec( isMonomial := true, comment := "whole group is monomial" )
gap> TestMonomialQuick( S4 );
rec( isMonomial := true, comment := "abelian by supersolvable group" )
gap> TestMonomialQuick( Sl23 );
rec( isMonomial := "?", comment := "no decision by cheap tests" )
gap> TestSubnormallyMonomial( S4 );
rec( isSubnormallyMonomial := false, 
  character := Character( CharacterTable( S4 ), [ 3, -1, -1, 0, 1 ] ), 
  comment := "found non-SM character" )
gap> TestSubnormallyMonomial( Irr( S4 )[4] );
rec( isSubnormallyMonomial := false, 
  comment := "all subnormal subgroups checked" )
gap> TestSubnormallyMonomial( DerivedSubgroup( S4 ) );
rec( isSubnormallyMonomial := true, comment := "all irreducibles checked" )
gap> IsSubnormallyMonomial( DerivedSubgroup( S4 ) );
true
gap> TestRelativelySM( DerivedSubgroup( S4 ) );
rec( isRelativelySM := true, 
  comment := "normal subgroups are abelian or have nilpotent factor group" )

gap> IsMinimalNonmonomial( Sl23 );                  
true
gap> IsMinimalNonmonomial( S4 );
false

gap> MinimalNonmonomialGroup(  2,  3 ); # the group SL(2,3)
2^(1+2):3
gap> MinimalNonmonomialGroup(  3,  4 );
3^(1+2):4
gap> MinimalNonmonomialGroup(  5,  8 );
5^(1+2):Q8
gap> MinimalNonmonomialGroup( 13, 12 );                              
13^(1+2):2.D6
gap> MinimalNonmonomialGroup(  1, 14 );
2^(1+6):D14
gap> MinimalNonmonomialGroup(  2, 14 );
(2^(1+6)Y4):D14

gap> STOP_TEST( "ctblmono.tst", 259000000 );


#############################################################################
##
#E