File: grpmat.tst

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (65 lines) | stat: -rw-r--r-- 1,920 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#############################################################################
##
#W  grpmat.tst                  GAP tests                   Heiko Thei{\ss}en
##
#H  @(#)$Id: grpmat.tst,v 4.16.2.4 2005/08/29 14:50:35 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
##
##  To be listed in testall.g
##

gap> START_TEST("$Id: grpmat.tst,v 4.16.2.4 2005/08/29 14:50:35 gap Exp $");

gap> i := E(4);; G := Group([[i,0],[0,-i]],[[0,1],[-1,0]]);;
gap> gens := GeneratorsOfGroup( G );; IsSSortedList( gens );
false
gap> TypeObj( ShallowCopy( gens ) ) = false;
false
gap> SetName( G, "Q8" );
gap> One( TrivialSubgroup( G ) );
[ [ 1, 0 ], [ 0, 1 ] ]
gap> Size( G );
8
gap> IsHandledByNiceMonomorphism( G );
true
gap> pcgs := Pcgs( G );;
gap> Print(pcgs,"\n");
Pcgs([ [ [ 0, 1 ], [ -1, 0 ] ], [ [ E(4), 0 ], [ 0, -E(4) ] ], 
  [ [ -1, 0 ], [ 0, -1 ] ] ])
gap> cl := ConjugacyClasses( G );;
gap> Collected(List(cl,i->[Size(i),Order(Representative(i))]));
[ [ [ 1, 1 ], 1 ], [ [ 1, 2 ], 1 ], [ [ 2, 4 ], 3 ] ]
gap> Set(List( cl, c -> ExponentsOfPcElement( pcgs, Representative( c ) )));
[ [ 0, 0, 0 ], [ 0, 0, 1 ], [ 0, 1, 1 ], [ 1, 0, 1 ], [ 1, 1, 0 ] ]
gap> Size( AutomorphismGroup( G ) );
24
gap> g:=GL(4,3);;
gap> Length(ConjugacyClasses(g));
78
gap> gd:=DerivedSubgroup(g);;
gap> Index(g,gd);
2
gap> Length(ConjugacyClasses(gd));
51
gap> hom:=NaturalHomomorphismByNormalSubgroup(gd,Centre(gd));;
gap> u:=PreImage(hom,SylowSubgroup(Image(hom),3));;
gap> Size(u);
1458
gap> Index(u,DerivedSubgroup(u));
54
gap> g:= DerivedSubgroup( SO( 1, 8, 4 ) );;
gap> Collected( Factors( Size( g ) ) );
[ [ 2, 24 ], [ 3, 5 ], [ 5, 4 ], [ 7, 1 ], [ 13, 1 ], [ 17, 2 ] ]
gap> iso:= IsomorphismPermGroup( g );;
gap> img:=Image( iso );;
gap> Size(img);
67010895544320000

gap> STOP_TEST( "grpmat.tst", 1952300000 );


#############################################################################
##
#E