File: hash2.tst

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (600 lines) | stat: -rw-r--r-- 37,144 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#############################################################################
##
#W  hash2.tst                   GAP library		       Gene Cooperman
#W							     and Scott Murray
##
#H  @(#)$Id: hash2.tst,v 4.4.4.4 2005/08/29 14:50:35 gap Exp $
##
#Y  Copyright (C)  1998,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
##
##  Exclude from testall.g: why?
##

gap> START_TEST("$Id: hash2.tst,v 4.4.4.4 2005/08/29 14:50:35 gap Exp $");

##  Dense integer hash table

gap> hash := DenseHashTable();
Keys: [  ]
Values: [  ]
gap> for i in [1..1000] do
>     AddHashEntry( hash, i, i+1 );
> od;
gap> Print(hash); Size(hash);
Keys: [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
  20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 
  39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 
  58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 
  77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 
  96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 
  112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 
  127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 
  142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 
  157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 
  172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 
  187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 
  202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 
  217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 
  232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 
  247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 
  262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 
  277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 
  292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 
  307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 
  322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 
  337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 
  352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 
  367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 
  382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 
  397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 
  412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 
  427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 
  442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 
  457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 
  472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 
  487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 
  502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 
  517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 
  532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 
  547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 
  562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 
  577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 
  592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 
  607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 
  622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 
  637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 
  652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 
  667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 
  682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 
  697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 
  712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 
  727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 
  742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 
  757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 
  772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 
  787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 
  802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 
  817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 
  832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 
  847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 
  862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 
  877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 
  892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 
  907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 
  922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 
  937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 
  952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 
  967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 
  982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 
  997, 998, 999, 1000 ]
Values: [ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
  21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 
  40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 
  59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 
  78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 
  97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 
  112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 
  127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 
  142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 
  157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 
  172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 
  187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 
  202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 
  217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 
  232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 
  247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 
  262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 
  277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 
  292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 
  307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 
  322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 
  337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 
  352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 
  367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 
  382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 
  397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 
  412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 
  427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 
  442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 
  457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 
  472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 
  487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 
  502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 
  517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 
  532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 
  547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 
  562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 
  577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 
  592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 
  607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 
  622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 
  637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 
  652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 
  667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 
  682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 
  697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 
  712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 
  727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 
  742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 
  757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 
  772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 
  787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 
  802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 
  817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 
  832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 
  847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 
  862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 
  877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 
  892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 
  907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 
  922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 
  937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 
  952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 
  967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 
  982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 
  997, 998, 999, 1000, 1001 ]
1000
gap> Enumerator(hash); HashKeyEnumerator(hash); 
[ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 
  23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 
  42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 
  61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 
  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
  99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 
  114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 
  129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 
  144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 
  159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 
  174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 
  189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 
  204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 
  219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 
  234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 
  249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 
  264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 
  279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 
  294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 
  309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 
  324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 
  339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 
  354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 
  369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 
  384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 
  399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 
  414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 
  429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 
  444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 
  459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 
  474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 
  489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 
  504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 
  519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 
  534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 
  549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 
  564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 
  579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 
  594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 
  609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 
  624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 
  639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 
  654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 
  669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 
  684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 
  699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 
  714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 
  729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 
  744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 
  759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 
  774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 
  789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 
  804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 
  819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 
  834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 
  849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 
  864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 
  879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 
  894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 
  909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 
  924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 
  939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 
  954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 
  969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 
  984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 
  999, 1000, 1001 ]
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 
  22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 
  41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 
  60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 
  79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 
  98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 
  113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 
  128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 
  143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 
  158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 
  173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 
  188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 
  203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 
  218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 
  233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 
  248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 
  263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 
  278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 
  293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 
  308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 
  323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 
  338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 
  353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 
  368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 
  383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 
  398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 
  413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 
  428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 
  443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 
  458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 
  473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 
  488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 
  503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 
  518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 
  533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 
  548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 
  563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 
  578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 
  593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 
  608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 
  623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 
  638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 
  653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 
  668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 
  683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 
  698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 
  713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 
  728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 
  743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 
  758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 
  773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 
  788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 
  803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 
  818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 
  833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 
  848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 
  863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 
  878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 
  893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 
  908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 
  923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 
  938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 
  953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 
  968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 
  983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 
  998, 999, 1000 ]
gap> Iterator(hash);
<iterator>
gap> r := 500;
500
gap> GetHashEntry( hash, r );
501
gap> GetHashEntryAtLastIndex( hash );
501
gap> SetHashEntryAtLastIndex( hash, 0 );
0
gap> GetHashEntry( hash, r );
0
gap> SetHashEntry( hash, r, 1 );
1
gap> GetHashEntry( hash, r );
1
gap> GetHashEntry( hash, 1001 );
fail
gap> 
gap> 
gap> 
gap> ##  Sparse vector hash table
gap> V := FullRowSpace( GF(5), 3 );
( GF(5)^3 )
gap> hash := SparseHashTable(SparseIntKey(V,false));
Keys: [  ]
Values: [  ]
gap> for i in [1..124] do
>     e := Enumerator( V );
>     AddHashEntry( hash, e[i], e[i][1] );
> od;
gap> Print(hash); Size(hash);
Keys: [ [ 0*Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
  [ 0*Z(5), 0*Z(5), Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^2 ], 
  [ 0*Z(5), 0*Z(5), Z(5)^3 ], [ 0*Z(5), Z(5)^0, 0*Z(5) ], 
  [ 0*Z(5), Z(5)^0, Z(5)^0 ], [ 0*Z(5), Z(5)^0, Z(5) ], 
  [ 0*Z(5), Z(5)^0, Z(5)^2 ], [ 0*Z(5), Z(5)^0, Z(5)^3 ], 
  [ 0*Z(5), Z(5), 0*Z(5) ], [ 0*Z(5), Z(5), Z(5)^0 ], [ 0*Z(5), Z(5), Z(5) ], 
  [ 0*Z(5), Z(5), Z(5)^2 ], [ 0*Z(5), Z(5), Z(5)^3 ], 
  [ 0*Z(5), Z(5)^2, 0*Z(5) ], [ 0*Z(5), Z(5)^2, Z(5)^0 ], 
  [ 0*Z(5), Z(5)^2, Z(5) ], [ 0*Z(5), Z(5)^2, Z(5)^2 ], 
  [ 0*Z(5), Z(5)^2, Z(5)^3 ], [ 0*Z(5), Z(5)^3, 0*Z(5) ], 
  [ 0*Z(5), Z(5)^3, Z(5)^0 ], [ 0*Z(5), Z(5)^3, Z(5) ], 
  [ 0*Z(5), Z(5)^3, Z(5)^2 ], [ 0*Z(5), Z(5)^3, Z(5)^3 ], 
  [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^0, 0*Z(5), Z(5)^0 ], 
  [ Z(5)^0, 0*Z(5), Z(5) ], [ Z(5)^0, 0*Z(5), Z(5)^2 ], 
  [ Z(5)^0, 0*Z(5), Z(5)^3 ], [ Z(5)^0, Z(5)^0, 0*Z(5) ], 
  [ Z(5)^0, Z(5)^0, Z(5)^0 ], [ Z(5)^0, Z(5)^0, Z(5) ], 
  [ Z(5)^0, Z(5)^0, Z(5)^2 ], [ Z(5)^0, Z(5)^0, Z(5)^3 ], 
  [ Z(5)^0, Z(5), 0*Z(5) ], [ Z(5)^0, Z(5), Z(5)^0 ], [ Z(5)^0, Z(5), Z(5) ], 
  [ Z(5)^0, Z(5), Z(5)^2 ], [ Z(5)^0, Z(5), Z(5)^3 ], 
  [ Z(5)^0, Z(5)^2, 0*Z(5) ], [ Z(5)^0, Z(5)^2, Z(5)^0 ], 
  [ Z(5)^0, Z(5)^2, Z(5) ], [ Z(5)^0, Z(5)^2, Z(5)^2 ], 
  [ Z(5)^0, Z(5)^2, Z(5)^3 ], [ Z(5)^0, Z(5)^3, 0*Z(5) ], 
  [ Z(5)^0, Z(5)^3, Z(5)^0 ], [ Z(5)^0, Z(5)^3, Z(5) ], 
  [ Z(5)^0, Z(5)^3, Z(5)^2 ], [ Z(5)^0, Z(5)^3, Z(5)^3 ], 
  [ Z(5), 0*Z(5), 0*Z(5) ], [ Z(5), 0*Z(5), Z(5)^0 ], [ Z(5), 0*Z(5), Z(5) ], 
  [ Z(5), 0*Z(5), Z(5)^2 ], [ Z(5), 0*Z(5), Z(5)^3 ], 
  [ Z(5), Z(5)^0, 0*Z(5) ], [ Z(5), Z(5)^0, Z(5)^0 ], [ Z(5), Z(5)^0, Z(5) ], 
  [ Z(5), Z(5)^0, Z(5)^2 ], [ Z(5), Z(5)^0, Z(5)^3 ], [ Z(5), Z(5), 0*Z(5) ], 
  [ Z(5), Z(5), Z(5)^0 ], [ Z(5), Z(5), Z(5) ], [ Z(5), Z(5), Z(5)^2 ], 
  [ Z(5), Z(5), Z(5)^3 ], [ Z(5), Z(5)^2, 0*Z(5) ], [ Z(5), Z(5)^2, Z(5)^0 ], 
  [ Z(5), Z(5)^2, Z(5) ], [ Z(5), Z(5)^2, Z(5)^2 ], [ Z(5), Z(5)^2, Z(5)^3 ], 
  [ Z(5), Z(5)^3, 0*Z(5) ], [ Z(5), Z(5)^3, Z(5)^0 ], [ Z(5), Z(5)^3, Z(5) ], 
  [ Z(5), Z(5)^3, Z(5)^2 ], [ Z(5), Z(5)^3, Z(5)^3 ], 
  [ Z(5)^2, 0*Z(5), 0*Z(5) ], [ Z(5)^2, 0*Z(5), Z(5)^0 ], 
  [ Z(5)^2, 0*Z(5), Z(5) ], [ Z(5)^2, 0*Z(5), Z(5)^2 ], 
  [ Z(5)^2, 0*Z(5), Z(5)^3 ], [ Z(5)^2, Z(5)^0, 0*Z(5) ], 
  [ Z(5)^2, Z(5)^0, Z(5)^0 ], [ Z(5)^2, Z(5)^0, Z(5) ], 
  [ Z(5)^2, Z(5)^0, Z(5)^2 ], [ Z(5)^2, Z(5)^0, Z(5)^3 ], 
  [ Z(5)^2, Z(5), 0*Z(5) ], [ Z(5)^2, Z(5), Z(5)^0 ], [ Z(5)^2, Z(5), Z(5) ], 
  [ Z(5)^2, Z(5), Z(5)^2 ], [ Z(5)^2, Z(5), Z(5)^3 ], 
  [ Z(5)^2, Z(5)^2, 0*Z(5) ], [ Z(5)^2, Z(5)^2, Z(5)^0 ], 
  [ Z(5)^2, Z(5)^2, Z(5) ], [ Z(5)^2, Z(5)^2, Z(5)^2 ], 
  [ Z(5)^2, Z(5)^2, Z(5)^3 ], [ Z(5)^2, Z(5)^3, 0*Z(5) ], 
  [ Z(5)^2, Z(5)^3, Z(5)^0 ], [ Z(5)^2, Z(5)^3, Z(5) ], 
  [ Z(5)^2, Z(5)^3, Z(5)^2 ], [ Z(5)^2, Z(5)^3, Z(5)^3 ], 
  [ Z(5)^3, 0*Z(5), 0*Z(5) ], [ Z(5)^3, 0*Z(5), Z(5)^0 ], 
  [ Z(5)^3, 0*Z(5), Z(5) ], [ Z(5)^3, 0*Z(5), Z(5)^2 ], 
  [ Z(5)^3, 0*Z(5), Z(5)^3 ], [ Z(5)^3, Z(5)^0, 0*Z(5) ], 
  [ Z(5)^3, Z(5)^0, Z(5)^0 ], [ Z(5)^3, Z(5)^0, Z(5) ], 
  [ Z(5)^3, Z(5)^0, Z(5)^2 ], [ Z(5)^3, Z(5)^0, Z(5)^3 ], 
  [ Z(5)^3, Z(5), 0*Z(5) ], [ Z(5)^3, Z(5), Z(5)^0 ], [ Z(5)^3, Z(5), Z(5) ], 
  [ Z(5)^3, Z(5), Z(5)^2 ], [ Z(5)^3, Z(5), Z(5)^3 ], 
  [ Z(5)^3, Z(5)^2, 0*Z(5) ], [ Z(5)^3, Z(5)^2, Z(5)^0 ], 
  [ Z(5)^3, Z(5)^2, Z(5) ], [ Z(5)^3, Z(5)^2, Z(5)^2 ], 
  [ Z(5)^3, Z(5)^2, Z(5)^3 ], [ Z(5)^3, Z(5)^3, 0*Z(5) ], 
  [ Z(5)^3, Z(5)^3, Z(5)^0 ], [ Z(5)^3, Z(5)^3, Z(5) ], 
  [ Z(5)^3, Z(5)^3, Z(5)^2 ] ]
Values: [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 
  0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 
  0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, 
  Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, 
  Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, 
  Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5), Z(5), Z(5), Z(5), 
  Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), 
  Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5)^2, Z(5)^2, 
  Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, 
  Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, 
  Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, 
  Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, 
  Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, 
  Z(5)^3, Z(5)^3 ]
124
gap> Enumerator(hash); HashKeyEnumerator(hash); 
[ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 
  0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 
  0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, Z(5)^0, 
  Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, 
  Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, 
  Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), 
  Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), 
  Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5), Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, 
  Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, 
  Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^2, 
  Z(5)^2, Z(5)^2, Z(5)^2, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, 
  Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, 
  Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3, Z(5)^3 ]
[ [ 0*Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
  [ 0*Z(5), 0*Z(5), Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^2 ], 
  [ 0*Z(5), 0*Z(5), Z(5)^3 ], [ 0*Z(5), Z(5)^0, 0*Z(5) ], 
  [ 0*Z(5), Z(5)^0, Z(5)^0 ], [ 0*Z(5), Z(5)^0, Z(5) ], 
  [ 0*Z(5), Z(5)^0, Z(5)^2 ], [ 0*Z(5), Z(5)^0, Z(5)^3 ], 
  [ 0*Z(5), Z(5), 0*Z(5) ], [ 0*Z(5), Z(5), Z(5)^0 ], [ 0*Z(5), Z(5), Z(5) ], 
  [ 0*Z(5), Z(5), Z(5)^2 ], [ 0*Z(5), Z(5), Z(5)^3 ], 
  [ 0*Z(5), Z(5)^2, 0*Z(5) ], [ 0*Z(5), Z(5)^2, Z(5)^0 ], 
  [ 0*Z(5), Z(5)^2, Z(5) ], [ 0*Z(5), Z(5)^2, Z(5)^2 ], 
  [ 0*Z(5), Z(5)^2, Z(5)^3 ], [ 0*Z(5), Z(5)^3, 0*Z(5) ], 
  [ 0*Z(5), Z(5)^3, Z(5)^0 ], [ 0*Z(5), Z(5)^3, Z(5) ], 
  [ 0*Z(5), Z(5)^3, Z(5)^2 ], [ 0*Z(5), Z(5)^3, Z(5)^3 ], 
  [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^0, 0*Z(5), Z(5)^0 ], 
  [ Z(5)^0, 0*Z(5), Z(5) ], [ Z(5)^0, 0*Z(5), Z(5)^2 ], 
  [ Z(5)^0, 0*Z(5), Z(5)^3 ], [ Z(5)^0, Z(5)^0, 0*Z(5) ], 
  [ Z(5)^0, Z(5)^0, Z(5)^0 ], [ Z(5)^0, Z(5)^0, Z(5) ], 
  [ Z(5)^0, Z(5)^0, Z(5)^2 ], [ Z(5)^0, Z(5)^0, Z(5)^3 ], 
  [ Z(5)^0, Z(5), 0*Z(5) ], [ Z(5)^0, Z(5), Z(5)^0 ], [ Z(5)^0, Z(5), Z(5) ], 
  [ Z(5)^0, Z(5), Z(5)^2 ], [ Z(5)^0, Z(5), Z(5)^3 ], 
  [ Z(5)^0, Z(5)^2, 0*Z(5) ], [ Z(5)^0, Z(5)^2, Z(5)^0 ], 
  [ Z(5)^0, Z(5)^2, Z(5) ], [ Z(5)^0, Z(5)^2, Z(5)^2 ], 
  [ Z(5)^0, Z(5)^2, Z(5)^3 ], [ Z(5)^0, Z(5)^3, 0*Z(5) ], 
  [ Z(5)^0, Z(5)^3, Z(5)^0 ], [ Z(5)^0, Z(5)^3, Z(5) ], 
  [ Z(5)^0, Z(5)^3, Z(5)^2 ], [ Z(5)^0, Z(5)^3, Z(5)^3 ], 
  [ Z(5), 0*Z(5), 0*Z(5) ], [ Z(5), 0*Z(5), Z(5)^0 ], [ Z(5), 0*Z(5), Z(5) ], 
  [ Z(5), 0*Z(5), Z(5)^2 ], [ Z(5), 0*Z(5), Z(5)^3 ], 
  [ Z(5), Z(5)^0, 0*Z(5) ], [ Z(5), Z(5)^0, Z(5)^0 ], [ Z(5), Z(5)^0, Z(5) ], 
  [ Z(5), Z(5)^0, Z(5)^2 ], [ Z(5), Z(5)^0, Z(5)^3 ], [ Z(5), Z(5), 0*Z(5) ], 
  [ Z(5), Z(5), Z(5)^0 ], [ Z(5), Z(5), Z(5) ], [ Z(5), Z(5), Z(5)^2 ], 
  [ Z(5), Z(5), Z(5)^3 ], [ Z(5), Z(5)^2, 0*Z(5) ], [ Z(5), Z(5)^2, Z(5)^0 ], 
  [ Z(5), Z(5)^2, Z(5) ], [ Z(5), Z(5)^2, Z(5)^2 ], [ Z(5), Z(5)^2, Z(5)^3 ], 
  [ Z(5), Z(5)^3, 0*Z(5) ], [ Z(5), Z(5)^3, Z(5)^0 ], [ Z(5), Z(5)^3, Z(5) ], 
  [ Z(5), Z(5)^3, Z(5)^2 ], [ Z(5), Z(5)^3, Z(5)^3 ], 
  [ Z(5)^2, 0*Z(5), 0*Z(5) ], [ Z(5)^2, 0*Z(5), Z(5)^0 ], 
  [ Z(5)^2, 0*Z(5), Z(5) ], [ Z(5)^2, 0*Z(5), Z(5)^2 ], 
  [ Z(5)^2, 0*Z(5), Z(5)^3 ], [ Z(5)^2, Z(5)^0, 0*Z(5) ], 
  [ Z(5)^2, Z(5)^0, Z(5)^0 ], [ Z(5)^2, Z(5)^0, Z(5) ], 
  [ Z(5)^2, Z(5)^0, Z(5)^2 ], [ Z(5)^2, Z(5)^0, Z(5)^3 ], 
  [ Z(5)^2, Z(5), 0*Z(5) ], [ Z(5)^2, Z(5), Z(5)^0 ], [ Z(5)^2, Z(5), Z(5) ], 
  [ Z(5)^2, Z(5), Z(5)^2 ], [ Z(5)^2, Z(5), Z(5)^3 ], 
  [ Z(5)^2, Z(5)^2, 0*Z(5) ], [ Z(5)^2, Z(5)^2, Z(5)^0 ], 
  [ Z(5)^2, Z(5)^2, Z(5) ], [ Z(5)^2, Z(5)^2, Z(5)^2 ], 
  [ Z(5)^2, Z(5)^2, Z(5)^3 ], [ Z(5)^2, Z(5)^3, 0*Z(5) ], 
  [ Z(5)^2, Z(5)^3, Z(5)^0 ], [ Z(5)^2, Z(5)^3, Z(5) ], 
  [ Z(5)^2, Z(5)^3, Z(5)^2 ], [ Z(5)^2, Z(5)^3, Z(5)^3 ], 
  [ Z(5)^3, 0*Z(5), 0*Z(5) ], [ Z(5)^3, 0*Z(5), Z(5)^0 ], 
  [ Z(5)^3, 0*Z(5), Z(5) ], [ Z(5)^3, 0*Z(5), Z(5)^2 ], 
  [ Z(5)^3, 0*Z(5), Z(5)^3 ], [ Z(5)^3, Z(5)^0, 0*Z(5) ], 
  [ Z(5)^3, Z(5)^0, Z(5)^0 ], [ Z(5)^3, Z(5)^0, Z(5) ], 
  [ Z(5)^3, Z(5)^0, Z(5)^2 ], [ Z(5)^3, Z(5)^0, Z(5)^3 ], 
  [ Z(5)^3, Z(5), 0*Z(5) ], [ Z(5)^3, Z(5), Z(5)^0 ], [ Z(5)^3, Z(5), Z(5) ], 
  [ Z(5)^3, Z(5), Z(5)^2 ], [ Z(5)^3, Z(5), Z(5)^3 ], 
  [ Z(5)^3, Z(5)^2, 0*Z(5) ], [ Z(5)^3, Z(5)^2, Z(5)^0 ], 
  [ Z(5)^3, Z(5)^2, Z(5) ], [ Z(5)^3, Z(5)^2, Z(5)^2 ], 
  [ Z(5)^3, Z(5)^2, Z(5)^3 ], [ Z(5)^3, Z(5)^3, 0*Z(5) ], 
  [ Z(5)^3, Z(5)^3, Z(5)^0 ], [ Z(5)^3, Z(5)^3, Z(5) ], 
  [ Z(5)^3, Z(5)^3, Z(5)^2 ] ]
gap> r := e[20];
[ 0*Z(5), Z(5)^2, Z(5)^3 ]
gap> GetHashEntry( hash, r );
0*Z(5)
gap> GetHashEntryAtLastIndex( hash );
0*Z(5)
gap> SetHashEntryAtLastIndex( hash, 0 );
0
gap> GetHashEntry( hash, r );
0
gap> SetHashEntry( hash, r, 1 );
1
gap> GetHashEntry( hash, r );
1
gap> GetHashEntry( hash, e[125] );
fail
gap> 
gap> 
gap> 
gap> 
gap> hash := SparseHashTable();
Keys: [  ]
Values: [  ]
gap> V := FullRowSpace( GF(5), 3 );
( GF(5)^3 )
gap> for i in [2..125] do
>     r := Subspace( V, [e[i]], "basis" );
>     AddHashEntry( hash, r, Basis(r) );
> od;
gap> Print(hash); Size(hash);
Keys: [ VectorSpace( GF(5), [ [ 0*Z(5), Z(5)^0, 0*Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ 0*Z(5), Z(5)^0, Z(5)^0 ] ] ), 
  VectorSpace( GF(5), [ [ 0*Z(5), Z(5)^0, Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ 0*Z(5), Z(5)^0, Z(5)^2 ] ] ), 
  VectorSpace( GF(5), [ [ 0*Z(5), Z(5)^0, Z(5)^3 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, 0*Z(5), 0*Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, 0*Z(5), Z(5)^0 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, 0*Z(5), Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, 0*Z(5), Z(5)^2 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, 0*Z(5), Z(5)^3 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^0, 0*Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^0, Z(5)^0 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^0, Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^0, Z(5)^2 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^0, Z(5)^3 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5), 0*Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5), Z(5)^0 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5), Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5), Z(5)^2 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5), Z(5)^3 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^2, 0*Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^2, Z(5)^0 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^2, Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^2, Z(5)^2 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^2, Z(5)^3 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^3, 0*Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^3, Z(5)^0 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^3, Z(5) ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^3, Z(5)^2 ] ] ), 
  VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^3, Z(5)^3 ] ] ), 
  VectorSpace( GF(5), [ [ 0*Z(5), 0*Z(5), Z(5)^0 ] ] ) ]
Values: 
[ SemiEchelonBasis( VectorSpace( GF(5), [ [ 0*Z(5), Z(5)^0, 0*Z(5) ] ] ), 
    [ [ 0*Z(5), Z(5)^0, 0*Z(5) ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ 0*Z(5), Z(5)^0, Z(5)^0 ] ] ), [ [ 0*Z(5), Z(5)^0, Z(5)^0 ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ 0*Z(5), Z(5)^0, Z(5) ] ] ), 
    [ [ 0*Z(5), Z(5)^0, Z(5) ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ 0*Z(5), Z(5)^0, Z(5)^2 ] ] ), [ [ 0*Z(5), Z(5)^0, Z(5)^2 ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ 0*Z(5), Z(5)^0, Z(5)^3 ] ] ), 
    [ [ 0*Z(5), Z(5)^0, Z(5)^3 ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, 0*Z(5), 0*Z(5) ] ] ), [ [ Z(5)^0, 0*Z(5), 0*Z(5) ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, 0*Z(5), Z(5)^0 ] ] ), 
    [ [ Z(5)^0, 0*Z(5), Z(5)^0 ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, 0*Z(5), Z(5) ] ] ), [ [ Z(5)^0, 0*Z(5), Z(5) ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, 0*Z(5), Z(5)^2 ] ] ), 
    [ [ Z(5)^0, 0*Z(5), Z(5)^2 ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, 0*Z(5), Z(5)^3 ] ] ), [ [ Z(5)^0, 0*Z(5), Z(5)^3 ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^0, 0*Z(5) ] ] ), 
    [ [ Z(5)^0, Z(5)^0, 0*Z(5) ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5)^0, Z(5)^0 ] ] ), [ [ Z(5)^0, Z(5)^0, Z(5)^0 ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^0, Z(5) ] ] ), 
    [ [ Z(5)^0, Z(5)^0, Z(5) ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5)^0, Z(5)^2 ] ] ), [ [ Z(5)^0, Z(5)^0, Z(5)^2 ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^0, Z(5)^3 ] ] ), 
    [ [ Z(5)^0, Z(5)^0, Z(5)^3 ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5), 0*Z(5) ] ] ), [ [ Z(5)^0, Z(5), 0*Z(5) ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5), Z(5)^0 ] ] ), 
    [ [ Z(5)^0, Z(5), Z(5)^0 ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5), Z(5) ] ] ), [ [ Z(5)^0, Z(5), Z(5) ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5), Z(5)^2 ] ] ), 
    [ [ Z(5)^0, Z(5), Z(5)^2 ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5), Z(5)^3 ] ] ), [ [ Z(5)^0, Z(5), Z(5)^3 ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^2, 0*Z(5) ] ] ), 
    [ [ Z(5)^0, Z(5)^2, 0*Z(5) ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5)^2, Z(5)^0 ] ] ), [ [ Z(5)^0, Z(5)^2, Z(5)^0 ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^2, Z(5) ] ] ), 
    [ [ Z(5)^0, Z(5)^2, Z(5) ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5)^2, Z(5)^2 ] ] ), [ [ Z(5)^0, Z(5)^2, Z(5)^2 ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^2, Z(5)^3 ] ] ), 
    [ [ Z(5)^0, Z(5)^2, Z(5)^3 ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5)^3, 0*Z(5) ] ] ), [ [ Z(5)^0, Z(5)^3, 0*Z(5) ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^3, Z(5)^0 ] ] ), 
    [ [ Z(5)^0, Z(5)^3, Z(5)^0 ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5)^3, Z(5) ] ] ), [ [ Z(5)^0, Z(5)^3, Z(5) ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ Z(5)^0, Z(5)^3, Z(5)^2 ] ] ), 
    [ [ Z(5)^0, Z(5)^3, Z(5)^2 ] ] ), SemiEchelonBasis( VectorSpace( GF(5), 
    [ [ Z(5)^0, Z(5)^3, Z(5)^3 ] ] ), [ [ Z(5)^0, Z(5)^3, Z(5)^3 ] ] ), 
  SemiEchelonBasis( VectorSpace( GF(5), [ [ 0*Z(5), 0*Z(5), Z(5)^0 ] ] ), 
    [ [ 0*Z(5), 0*Z(5), Z(5)^0 ] ] ) ]
31
gap> r := Subspace( V, [e[2]], "basis" );
<vector space of dimension 1 over GF(5)>
gap> GetHashEntry( hash, r );
SemiEchelonBasis( <vector space of dimension 1 over GF(5)>, 
[ [ 0*Z(5), 0*Z(5), Z(5)^0 ] ] )
gap> GetHashEntryAtLastIndex( hash );
SemiEchelonBasis( <vector space of dimension 1 over GF(5)>, 
[ [ 0*Z(5), 0*Z(5), Z(5)^0 ] ] )
gap> SetHashEntryAtLastIndex( hash, 0 );
0
gap> GetHashEntry( hash, r );
0
gap> SetHashEntry( hash, r, 1 );
1
gap> GetHashEntry( hash, r );
1
#gap> GetHashEntry( hash, Zero(V) );
#fail

gap> STOP_TEST( "hash2.tst", 20800000 );


#############################################################################
##
#E