File: onecohom.tst

package info (click to toggle)
gap 4r4p12-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 29,584 kB
  • ctags: 7,113
  • sloc: ansic: 98,786; sh: 3,299; perl: 2,263; makefile: 498; asm: 63; awk: 6
file content (70 lines) | stat: -rw-r--r-- 2,362 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#############################################################################
##
#W  onecohom.tst                GAP tests                    Alexander Hulpke
##
#H  @(#)$Id: onecohom.tst,v 1.10.2.3 2005/05/11 14:53:02 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
##
##  This  file  tests the automorphism routines
##
##  To be listed in testall.g
##

gap> START_TEST("$Id: onecohom.tst,v 1.10.2.3 2005/05/11 14:53:02 gap Exp $");

gap> g:=Group((16,18,17),(14,15)(17,18),(17,18),(13,14,15),
> (11,12)(13,15)(16,18,17),
> (10,12)(13,14),(8,9)(10,12),(7,8)(14,15)(16,18,17),
> (5,6)(7,9,8)(10,11,12)(13,15)(16,18,17),
> (4,6)(7,9,8)(10,12,11)(14,15)(16,17,18),
> (2,3)(4,5,6)(7,9,8)(11,12)(13,15)(16,18),
> (1,2,3)(10,12,11)(13,15,14),(1,9,4,18,12)(2,8,5,17,10)
> (3,7,6,16,11),(1,16,2,18)(3,17)(4,6)(7,8)(10,14,12,13,11,15));;
gap> n:=Group((10,12)(14,15),(10,11)(13,15),(10,12,11),(11,12),
> (11,12)(13,15,14)(16,18),(11,12)(13,15)(16,17,18),(5,6)(11,12),
> (4,5,6),(7,9),(4,6)(7,8)(10,12)(13,14)(17,18),(1,2),
> (1,3,2)(4,5,6)(8,9)(10,11)(14,15),(1,3)(4,5,6)(7,9,8)(13,15,14),
> (1,3)(7,8)(11,12)(13,15)(16,18,17),
> (1,3)(4,6,5)(8,9)(10,11)(17,18),(4,6,5)(7,8,9)(14,15)(17,18),
> (1,3)(7,8)(10,12)(13,15,14)(16,17));;
gap> Length(Complementclasses(g,n));
2
gap> g:=PerfectGroup(IsPermGroup,120,1);;
gap> n:=Filtered(NormalSubgroups(g),i->IsElementaryAbelian(i) and Size(i)>1)[1];;
gap> ocr:=OneCocycles(g,n);;
gap> ocr.isSplitExtension;
false
gap> Size(ocr.oneCoboundaries);
1
gap> Size(ocr.oneCocycles);
1
gap> g:=PerfectGroup(IsPermGroup,960,1);;
gap> n:=Filtered(NormalSubgroups(g),i->IsElementaryAbelian(i) and Size(i)>1)[1];;
gap> ocr:=OneCocycles(g,n);;
gap> ocr.isSplitExtension;
true
gap> Size(ocr.complement);
60
gap> Size(Intersection(ocr.complement,n));
1
gap> Size(ocr.oneCoboundaries);
16
gap> Size(ocr.oneCocycles);
64
gap> b:=BaseSteinitzVectors(BasisVectors(Basis(ocr.oneCocycles)),BasisVectors(Basis(ocr.oneCoboundaries)));;
gap> b:=AsList(VectorSpace(GF(2),b.factorspace));;
gap> com:=List(b,ocr.cocycleToComplement);;
gap> List(com,Size);
[ 60, 60, 60, 60 ]
gap> List(com,i->Number(com,j->RepresentativeAction(g,i,j)<>fail));
[ 1, 1, 1, 1 ]

# that's all, folks
gap> STOP_TEST( "onecohom.tst", 303400000 );


#############################################################################
##
#E