## File: onecohom.tst

package info (click to toggle)
gap 4r4p12-2
 `12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970` ``````############################################################################# ## #W onecohom.tst GAP tests Alexander Hulpke ## #H @(#)\$Id: onecohom.tst,v 1.10.2.3 2005/05/11 14:53:02 gap Exp \$ ## #Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany ## ## This file tests the automorphism routines ## ## To be listed in testall.g ## gap> START_TEST("\$Id: onecohom.tst,v 1.10.2.3 2005/05/11 14:53:02 gap Exp \$"); gap> g:=Group((16,18,17),(14,15)(17,18),(17,18),(13,14,15), > (11,12)(13,15)(16,18,17), > (10,12)(13,14),(8,9)(10,12),(7,8)(14,15)(16,18,17), > (5,6)(7,9,8)(10,11,12)(13,15)(16,18,17), > (4,6)(7,9,8)(10,12,11)(14,15)(16,17,18), > (2,3)(4,5,6)(7,9,8)(11,12)(13,15)(16,18), > (1,2,3)(10,12,11)(13,15,14),(1,9,4,18,12)(2,8,5,17,10) > (3,7,6,16,11),(1,16,2,18)(3,17)(4,6)(7,8)(10,14,12,13,11,15));; gap> n:=Group((10,12)(14,15),(10,11)(13,15),(10,12,11),(11,12), > (11,12)(13,15,14)(16,18),(11,12)(13,15)(16,17,18),(5,6)(11,12), > (4,5,6),(7,9),(4,6)(7,8)(10,12)(13,14)(17,18),(1,2), > (1,3,2)(4,5,6)(8,9)(10,11)(14,15),(1,3)(4,5,6)(7,9,8)(13,15,14), > (1,3)(7,8)(11,12)(13,15)(16,18,17), > (1,3)(4,6,5)(8,9)(10,11)(17,18),(4,6,5)(7,8,9)(14,15)(17,18), > (1,3)(7,8)(10,12)(13,15,14)(16,17));; gap> Length(Complementclasses(g,n)); 2 gap> g:=PerfectGroup(IsPermGroup,120,1);; gap> n:=Filtered(NormalSubgroups(g),i->IsElementaryAbelian(i) and Size(i)>1)[1];; gap> ocr:=OneCocycles(g,n);; gap> ocr.isSplitExtension; false gap> Size(ocr.oneCoboundaries); 1 gap> Size(ocr.oneCocycles); 1 gap> g:=PerfectGroup(IsPermGroup,960,1);; gap> n:=Filtered(NormalSubgroups(g),i->IsElementaryAbelian(i) and Size(i)>1)[1];; gap> ocr:=OneCocycles(g,n);; gap> ocr.isSplitExtension; true gap> Size(ocr.complement); 60 gap> Size(Intersection(ocr.complement,n)); 1 gap> Size(ocr.oneCoboundaries); 16 gap> Size(ocr.oneCocycles); 64 gap> b:=BaseSteinitzVectors(BasisVectors(Basis(ocr.oneCocycles)),BasisVectors(Basis(ocr.oneCoboundaries)));; gap> b:=AsList(VectorSpace(GF(2),b.factorspace));; gap> com:=List(b,ocr.cocycleToComplement);; gap> List(com,Size); [ 60, 60, 60, 60 ] gap> List(com,i->Number(com,j->RepresentativeAction(g,i,j)<>fail)); [ 1, 1, 1, 1 ] # that's all, folks gap> STOP_TEST( "onecohom.tst", 303400000 ); ############################################################################# ## #E ``````