File: module.tex

package info (click to toggle)
gap 4r4p4-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 25,972 kB
  • ctags: 6,672
  • sloc: ansic: 95,121; sh: 3,137; makefile: 219; perl: 11; awk: 6
file content (367 lines) | stat: -rw-r--r-- 10,328 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
% This file was created automatically from module.msk.
% DO NOT EDIT!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A  module.msk                   GAP documentation              Thomas Breuer
%%
%A  @(#)$Id: module.msk,v 1.12 2002/04/15 10:02:30 sal Exp $
%%
%Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
%Y  Copyright (C) 2002 The GAP Group
%%
\PreliminaryChapter{Modules}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Generating modules}

\>IsLeftOperatorAdditiveGroup( <D> ) C

A domain <D> lies in `IsLeftOperatorAdditiveGroup' if it is an additive
group that is closed under scalar multplication from the
left, and such that $\lambda*(x+y)=\lambda*x+\lambda*y$ for all
scalars $\lambda$ and elements $x,y\in D$.


\>IsLeftModule( <M> ) C

A domain <M> lies in `IsLeftModule' if it lies in
`IsLeftOperatorAdditiveGroup', {\it and} the set of scalars forms a ring,
{\it and} $(\lambda+\mu)*x=\lambda*x+\mu*x$ for scalars $\lambda,\mu$
and $x\in M$, {\it and} scalar multiplication satisfies $\lambda*(\mu*x)=
(\lambda*\mu)*x$ for scalars $\lambda,\mu$ and $x\in M$.



\beginexample
gap> V:= FullRowSpace( Rationals, 3 );
( Rationals^3 )
gap> IsLeftModule( V );
true
\endexample

\>GeneratorsOfLeftOperatorAdditiveGroup( <D> ) A

returns a list of elements of <D> that generates <D> as a left operator
additive group.


\>GeneratorsOfLeftModule( <M> ) A

returns a list of elements of <M> that generate <M> as a left module.



\beginexample
gap> V:= FullRowSpace( Rationals, 3 );;
gap> GeneratorsOfLeftModule( V );
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
\endexample

\>AsLeftModule( <R>, <D> ) O

if the domain <D> forms an additive group and is closed under left
multiplication by the elements of <R>, then `AsLeftModule( <R>, <D> )'
returns the domain <D> viewed as a left module.



\beginexample
gap> coll:= [ [0*Z(2),0*Z(2)], [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];
[ [ 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ], 
  [ Z(2)^0, Z(2)^0 ] ]
gap> AsLeftModule( GF(2), coll );
<vector space of dimension 2 over GF(2)>
\endexample

\>IsRightOperatorAdditiveGroup( <D> ) C

A domain <D> lies in `IsRightOperatorAdditiveGroup' if it is an additive
group that is closed under scalar multplication from the
right, and such that $(x+y)*\lambda=x*\lambda+y*\lambda$ for all
scalars $\lambda$ and elements $x,y\in D$.


\>IsRightModule( <M> ) C

A domain <M> lies in `IsRightModule' if it lies in
`IsRightOperatorAdditiveGroup', {\it and} the set of scalars forms a ring,
{\it and} $x*(\lambda+\mu) = x*\lambda+x*\mu$ for scalars $\lambda,\mu$
and $x\in M$, {\it and} scalar multiplication satisfies $(x*\mu)*\lambda=
x*(\mu*\lambda)$ for scalars $\lambda,\mu$ and $x\in M$.


\>GeneratorsOfRightOperatorAdditiveGroup( <D> ) A

returns a list of elements of <D> that generates <D> as a right operator
additive group.


\>GeneratorsOfRightModule( <M> ) A

returns a list of elements of <M> that generate <M> as a left module.



\>LeftModuleByGenerators( <R>, <gens> ) O
\>LeftModuleByGenerators( <R>, <gens>, <zero> ) O

returns the left module over <R> generated by <gens>.



\beginexample
gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );
<vector space over GF(2^4), with 3 generators>
\endexample

\>LeftActingDomain( <D> ) A

Let <D> be an external left set, that is, <D> is closed under the action
of a domain $L$ by multiplication from the left.
Then $L$ can be accessed as value of `LeftActingDomain' for <D>.




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Submodules}

\>Submodule( <M>, <gens> ) F
\>Submodule( <M>, <gens>, "basis" ) F

is the left module generated by the collection <gens>,
with parent module <M>.
The second form generates the submodule of <M> for that the list <gens>
is known to be a list of basis vectors;
in this case, it is *not* checked whether <gens> really are linearly
independent and whether all in <gens> lie in <M>.



\beginexample
gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );;
gap> W:= Submodule( V, [ coll[1], coll[2] ] );
<vector space over GF(2^4), with 2 generators>
gap> Parent( W ) = V;
true
\endexample

\>SubmoduleNC( <M>, <gens> ) F
\>SubmoduleNC( <M>, <gens>, "basis" ) F

`SubmoduleNC' does the same as `Submodule', except that it does not check
whether all in <gens> lie in <M>.


\>ClosureLeftModule( <M>, <m> ) O

is the left module generated by the left module generators of <M> and the
element <m>.



\beginexample
gap> V:= LeftModuleByGenerators( Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] );
<vector space over Rationals, with 2 generators>
gap> ClosureLeftModule( V, [ 1, 1, 1 ] );
<vector space over Rationals, with 3 generators>
\endexample

\>TrivialSubmodule( <M> ) A

returns the zero submodule of <M>.



\beginexample
gap> V:= LeftModuleByGenerators( Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] );;
gap> TrivialSubmodule( V );
<vector space over Rationals, with 0 generators>
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Free Modules}

\>IsFreeLeftModule( <M> ) C

A left module is free as module if it is isomorphic to a direct sum of
copies of its left acting domain.

Free left modules can have bases.

The characteristic (see~"Characteristic") of a free left module
is defined as the characteristic of its left acting domain
(see~"LeftActingDomain").


\>FreeLeftModule( <R>, <gens> ) F
\>FreeLeftModule( <R>, <gens>, <zero> ) F
\>FreeLeftModule( <R>, <gens>, "basis" ) F
\>FreeLeftModule( <R>, <gens>, <zero>, "basis" ) F

`FreeLeftModule( <R>, <gens> )' is the free left module over the ring
<R>, generated by the vectors in the collection <gens>.

If there are three arguments, a ring <R> and a collection <gens>
and an element <zero>,
then `FreeLeftModule( <R>, <gens>, <zero> )' is the <R>-free left module
generated by <gens>, with zero element <zero>.

If the last argument is the string `"basis"' then the vectors in
<gens> are known to form a basis of the free module.

It should be noted that the generators <gens> must be vectors,
that is, they must support an addition and a scalar action of <R>
via left multiplication.
(See also Section~"Constructing Domains" for the general meaning of
``generators'' in {\GAP}.)
In particular, `FreeLeftModule' is *not* an equivalent of commands
such as `FreeGroup' (see~"FreeGroup") in the sense of a constructor of
a free group on abstract generators;
Such a construction seems to be unnecessary for vector spaces,
for that one can use for example row spaces (see~"FullRowSpace")
in the finite dimensional case
and polynomial rings (see~"PolynomialRing") in the infinite dimensional
case.
Moreover, the definition of a ``natural'' addition for elements of a
given magma (for example a permutation group) is possible via the
construction of magma rings (see Chapter "ref:Magma Rings").



\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], "basis" );
<vector space of dimension 2 over Rationals>
\endexample

\>AsFreeLeftModule( <F>, <D> ) O

if the domain <D> is a free left module over <F>, then
`AsFreeLeftModule( <F>, <D> )' returns the domain <D> viewed as free
 left module over <F>.



\>Dimension( <M> ) A

A free left module has dimension $n$ if it is isomorphic to a direct sum
of $n$ copies of its left acting domain.

(We do *not* mark `Dimension' as invariant under isomorphisms
since we want to call `UseIsomorphismRelation' also for free left modules
over different left acting domains.)



\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> Dimension( V );
2
\endexample

\>IsFiniteDimensional( <M> ) P

is `true' if <M> is a free left module that is finite dimensional
over its left acting domain, and `false' otherwise.



\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> IsFiniteDimensional( V );
true
\endexample

\>UseBasis( <V>, <gens> ) O

The vectors in the list <gens> are known to form a basis of the
free left module <V>.
`UseBasis' stores information in <V> that can be derived form this fact,
namely
\beginlist%unordered
\item{--}
  <gens> are stored as left module generators if no such generators were
  bound (this is useful especially if <V> is an algebra),
\item{--}
  the dimension of <V> is stored.
\endlist



\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> UseBasis( V, [ [ 1, 0 ], [ 1, 1 ] ] );
gap> V;  # now V knows its dimension
<vector space of dimension 2 over Rationals>
\endexample


\>IsRowModule( <V> ) P

A *row module* is a free left module whose elements are row vectors.


\>IsMatrixModule( <V> ) P

A *matrix module* is a free left module whose elements are matrices.


\>IsFullRowModule( <M> ) P

A *full row module* is a module $R^n$,
for a ring $R$ and a nonnegative integer $n$.

More precisely, a full row module is a free left module over a ring $R$
such that the elements are row vectors with entries in $R$ and such that
the dimension is equal to the length of the row vectors.

Several functions delegate their tasks to full row modules,
for example `Iterator' and `Enumerator'.


\>FullRowModule( <R>, <n> ) F

is the row module `<R>^<n>',
for a ring <R> and a nonnegative integer <n>.



\beginexample
gap> V:= FullRowModule( Integers, 5 );
( Integers^5 )
\endexample

\>IsFullMatrixModule( <M> ) P

A *full matrix module* is a module $R^{[m,n]}$,
for a ring $R$ and two nonnegative integers $m$, $n$.

More precisely, a full matrix module is a free left module over a ring
$R$ such that the elements are matrices with entries in $R$
and such that the dimension is equal to the number of entries in each
matrix.


\>FullMatrixModule( <R>, <m>, <n> ) F

is the row module `<R>^[<m>,<n>]',
for a ring <R> and nonnegative integers <m> and <n>.



\beginexample
gap> FullMatrixModule( GaussianIntegers, 3, 6 );
( GaussianIntegers^[ 3, 6 ] )
\endexample


\>IsHandledByNiceBasis( <M> ) C

For a free left module <M> in this category, essentially all operations
are performed using a ``nicer'' free left module,
which is usually a row module.