1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#############################################################################
##
#W perf.gd GAP Groups Library Alexander Hulpke
##
#H @(#)$Id: perf.gd,v 4.14 2001/10/06 20:30:23 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
##
## This file contains the declarations for the Holt/Plesken library of
## perfect groups
##
Revision.perf_gd :=
"@(#)$Id: perf.gd,v 4.14 2001/10/06 20:30:23 gap Exp $";
PERFRec := fail; # indicator that perf0.grp is not loaded
PERFSELECT := [];
PERFGRP := [];
#############################################################################
##
#C IsPerfectLibraryGroup(<G>) identifier for groups constructed from the
## library (used for perm->fp isomorphism)
##
DeclareCategory("IsPerfectLibraryGroup", IsGroup );
#############################################################################
##
#O PerfGrpConst(<filter>,<descriptor>)
##
DeclareConstructor("PerfGrpConst",[IsGroup,IsList]);
#############################################################################
##
#F PerfGrpLoad(<size>) force loading of secondary files, return index
##
DeclareGlobalFunction("PerfGrpLoad");
#############################################################################
##
#A PerfectIdentification(<G>) . . . . . . . . . . . . id. for perfect groups
##
## This attribute is set for all groups obtained from the perfect groups
## library and has the value `[<size>,<nr>]' if the group is obtained with
## these parameters from the library.
##
DeclareAttribute("PerfectIdentification", IsGroup );
#############################################################################
##
#F SizesPerfectGroups()
##
DeclareGlobalFunction("SizesPerfectGroups");
#############################################################################
##
#F NumberPerfectGroups( <size> ) . . . . . . . . . . . . . . . . . . . . . .
##
## returns the number of non-isomorphic perfect groups of size <size> for
## each positive integer <size> up to $10^6$ except for the eight sizes
## listed at the beginning of this section for which the number is not
## yet known. For these values as well as for any argument out of range it
## returns `fail'.
##
DeclareGlobalFunction("NumberPerfectGroups");
DeclareSynonym("NrPerfectGroups",NumberPerfectGroups);
#############################################################################
##
#F NumberPerfectLibraryGroups( <size> ) . . . . . . . . . . . . . . . . . .
##
## returns the number of perfect groups of size <size> which are available
## in the library of finite perfect groups. (The purpose of the function
## is to provide a simple way to formulate a loop over all library groups
## of a given size.)
##
DeclareGlobalFunction("NumberPerfectLibraryGroups");
DeclareSynonym("NrPerfectLibraryGroups",NumberPerfectLibraryGroups);
#############################################################################
##
#F PerfectGroup( [<filt>, ]<size>[, <n>] )
#F PerfectGroup( [<filt>, ]<sizenumberpair> )
##
## returns a group which is isomorphic to the library group specified
## by the size number `[ <size>, <n> ]' or by the two separate
## arguments <size> and <n>, assuming a default value of $<n> = 1$.
## The optional argument <filt> defines the filter in which the group is
## returned.
## Possible filters so far are `IsPermGroup' and `IsSubgroupFpGroup'.
## In the latter case, the generators and relators used coincide with those
## given in~\cite{HP89}.
##
DeclareGlobalFunction("PerfectGroup");
#############################################################################
##
#F DisplayInformationPerfectGroups( <size> ) . . . . . . . . . . . . . . . .
#F DisplayInformationPerfectGroups( <size>, <n> ) . . . . . . . . . . . . .
#F DisplayInformationPerfectGroups( [ <size>, <n> ] ) . . . . . . . . . . .
##
## `DisplayInformationPerfectGroups' displays some invariants of the <n>-th
## group of order <size> from the perfect groups library.
##
## If no value of <n> has been specified, the invariants will be displayed
## for all groups of size <size> available in the library.
## The information provided for $G$ includes the following items:
## \beginlist%unordered
## \item{$\bullet$}
## a headline containing the size number `[ <size>, <n> ]' of $G$
## in the form `<size>.<n>' (the suffix `.<n>' will be suppressed
## if, up to isomorphism, $G$ is the only perfect group of order
## <size>),
## \item{$\bullet$} a message if $G$ is simple or quasisimple, i.e.,
## if the factor group of $G$ by its centre is simple,
## \item{$\bullet$} the ``description'' of the structure of $G$ as it is
## given by Holt and Plesken in~\cite{HP89} (see below),
## \item{$\bullet$} the size of the centre of $G$ (suppressed, if $G$ is
## simple),
## \item{$\bullet$} the prime decomposition of the size of $G$,
## \item{$\bullet$} orbit sizes for a faithful permutation representation
## of $G$ which is provided by the library (see below),
## \item{$\bullet$} a reference to each occurrence of $G$ in the tables of
## section 5.3 of \cite{HP89}. Each of these references
## consists of a class number and an internal number $(i,j)$ under which
## $G$ is listed in that class. For some groups, there is more than one
## reference because these groups belong to more than one of the classes
## in the book.
## \endlist
##
DeclareGlobalFunction("DisplayInformationPerfectGroups");
#############################################################################
##
#F SizeNumbersPerfectGroups( <factor1>, <factor2>, ... )
##
## `SizeNumbersPerfectGroups' returns a list of pairs, each entry consisting
## of a group order and the number of those groups in the library of perfect
## groups that contain the specified factors <factor1>, <factor2>, ...
## among their composition factors.
##
## Each argument must either be the name of a simple group or an integer
## which stands for the product of the sizes of one or more cyclic factors.
## (In fact, the function replaces all integers among the arguments
## by their product.)
##
## The following text strings are accepted as simple group names.
## \beginlist%unordered
## \item{$\bullet$} `A<n>' or `A(<n>)' for the alternating groups $A_n$,
## $5\leq n\leq9$, for example `A5' or `A(6)'.
## \item{$\bullet$} `L<n>(<q>)' or `L(<n>,<q>)' for $PSL(n,q)$, where
## $n\in\{2,3\}$ and $q$ a prime power, ranging
## \itemitem{$\circ$}%unordered
## for $n=2$ from 4 to 125
## \itemitem{$\circ$} for $n=3$ from 2 to 5
## \item{$\bullet$} `U<n>(<q>)' or `U(<n>,<q>)' for $PSU(n,q)$, where
## $n\in\{3,4\}$ and $q$ a prime power, ranging
## \itemitem{$\circ$}%unordered
## for $n=3$ from 3 to 5
## \itemitem{$\circ$} for $n=4$ from 2 to 2
## \item{$\bullet$} `Sp4(4)' or `S(4,4)' for the symplectic group $S(4,4)$,
## \item{$\bullet$} `Sz(8)' for the Suzuki group $Sz(8)$,
## \item{$\bullet$} `M<n>' or `M(<n>)' for the Mathieu groups $M_{11}$,
## $M_{12}$, and $M_{22}$, and
## \item{$\bullet$} `J<n>' or `J(<n>)' for the Janko groups $J_1$ and
## $J_2$.
## \endlist
##
## Note that, for most of the groups, the preceding list offers two
## different names in order to be consistent with the notation used in
## \cite{HP89} as well as with the notation used in the
## `DisplayCompositionSeries' command of {\GAP}. However, as the names are
## compared as text strings, you are restricted to the above choice. Even
## expressions like `L2(2^5)' are not accepted.
##
## As the use of the term $PSU(n,q)$ is not unique in the literature, we
## mention that in this library it denotes the factor group of $SU(n,q)$ by
## its centre, where $SU(n,q)$ is the group of all $n \times n$ unitary
## matrices with entries in $GF(q^2)$ and determinant 1.
##
## The purpose of the function is to provide a simple way to formulate a
## loop over all library groups which contain certain composition factors.
##
DeclareGlobalFunction("SizeNumbersPerfectGroups");
#############################################################################
##
#E
|