File: perf.gd

package info (click to toggle)
gap 4r4p4-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 25,972 kB
  • ctags: 6,672
  • sloc: ansic: 95,121; sh: 3,137; makefile: 219; perl: 11; awk: 6
file content (200 lines) | stat: -rw-r--r-- 8,428 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#############################################################################
##
#W  perf.gd               GAP Groups Library                 Alexander Hulpke
##
#H  @(#)$Id: perf.gd,v 4.14 2001/10/06 20:30:23 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the declarations for the Holt/Plesken library of
##  perfect groups
##
Revision.perf_gd :=
    "@(#)$Id: perf.gd,v 4.14 2001/10/06 20:30:23 gap Exp $";


PERFRec := fail; # indicator that perf0.grp is not loaded
PERFSELECT := [];
PERFGRP := [];


#############################################################################
##
#C  IsPerfectLibraryGroup(<G>)  identifier for groups constructed from the
##                              library (used for perm->fp isomorphism)
##
DeclareCategory("IsPerfectLibraryGroup", IsGroup );


#############################################################################
##
#O  PerfGrpConst(<filter>,<descriptor>)
##
DeclareConstructor("PerfGrpConst",[IsGroup,IsList]);


#############################################################################
##
#F  PerfGrpLoad(<size>)  force loading of secondary files, return index
##
DeclareGlobalFunction("PerfGrpLoad");


#############################################################################
##
#A  PerfectIdentification(<G>) . . . . . . . . . . . . id. for perfect groups
##
##  This attribute is set for all groups obtained from the perfect groups
##  library and has the value `[<size>,<nr>]' if the group is obtained with
##  these parameters from the library.
##
DeclareAttribute("PerfectIdentification", IsGroup );


#############################################################################
##
#F  SizesPerfectGroups()
##
DeclareGlobalFunction("SizesPerfectGroups");


#############################################################################
##
#F  NumberPerfectGroups( <size> ) . . . . . . . . . . . . . . . . . . . . . .
##
##  returns the number of non-isomorphic perfect groups of size <size> for
##  each positive integer  <size> up to $10^6$ except for the eight  sizes
##  listed at the beginning  of  this section for  which the number is not
##  yet known. For these values as well as for any argument out of range it
##  returns `fail'.
##
DeclareGlobalFunction("NumberPerfectGroups");
DeclareSynonym("NrPerfectGroups",NumberPerfectGroups);


#############################################################################
##
#F  NumberPerfectLibraryGroups( <size> )  . . . . . . . . . . . . . . . . . .
##
##  returns the number of perfect groups of size <size> which are available
##  in the  library of finite perfect groups. (The purpose  of the function
##  is  to provide a simple way  to formulate a loop over all library groups
##  of a given size.)
##
DeclareGlobalFunction("NumberPerfectLibraryGroups");
DeclareSynonym("NrPerfectLibraryGroups",NumberPerfectLibraryGroups);


#############################################################################
##
#F  PerfectGroup( [<filt>, ]<size>[, <n>] )
#F  PerfectGroup( [<filt>, ]<sizenumberpair> )
##
##  returns a group which is isomorphic to the library group specified
##  by the size number `[ <size>, <n> ]'  or   by the  two  separate
##  arguments <size> and  <n>,  assuming a default   value  of $<n> = 1$.
##  The optional argument <filt> defines the filter in which the group is
##  returned.
##  Possible filters so far are `IsPermGroup' and `IsSubgroupFpGroup'.
##  In the latter case, the  generators and relators used coincide with those
##  given in~\cite{HP89}.
##
DeclareGlobalFunction("PerfectGroup");


#############################################################################
##
#F  DisplayInformationPerfectGroups( <size> ) . . . . . . . . . . . . . . . .
#F  DisplayInformationPerfectGroups( <size>, <n> )  . . . . . . . . . . . . .
#F  DisplayInformationPerfectGroups( [ <size>, <n> ] )  . . . . . . . . . . .
##
##  `DisplayInformationPerfectGroups' displays some invariants of the <n>-th
##  group of order <size> from the perfect groups library.
##
##  If no value of <n> has been specified, the invariants will be displayed
##  for all groups of size <size> available in the library.
##  The information provided for $G$ includes the following items:
##  \beginlist%unordered
##    \item{$\bullet$}
##        a headline containing the size number `[ <size>, <n> ]' of $G$
##        in the form `<size>.<n>' (the suffix `.<n>' will be suppressed
##        if, up to isomorphism, $G$ is the only perfect group of order
##        <size>),
##    \item{$\bullet$} a message if $G$ is simple  or quasisimple, i.e.,
##        if the factor group of $G$ by its centre is simple,
##    \item{$\bullet$} the ``description'' of  the structure of  $G$ as it is
##      given by Holt and Plesken in~\cite{HP89} (see below),
##    \item{$\bullet$} the size of  the centre of $G$  (suppressed, if $G$ is
##      simple),
##    \item{$\bullet$} the prime decomposition of the size of $G$,
##    \item{$\bullet$} orbit sizes for  a faithful permutation representation
##      of $G$ which is provided by the library (see below),
##    \item{$\bullet$} a reference to each occurrence of $G$ in the tables of
##      section 5.3    of  \cite{HP89}. Each  of   these  references
##      consists of a class number and an internal number $(i,j)$ under which
##      $G$ is listed in that class. For some groups, there  is more than one
##      reference because these groups belong to more than one of the classes
##      in the book.
##  \endlist
##
DeclareGlobalFunction("DisplayInformationPerfectGroups");


#############################################################################
##
#F  SizeNumbersPerfectGroups( <factor1>, <factor2>, ... )
##
##  `SizeNumbersPerfectGroups' returns a list of pairs, each entry consisting
##  of a group order and the number of those groups in the library of perfect
##  groups that contain the specified factors <factor1>, <factor2>, ...
##  among their composition factors.
##
##  Each argument must either be the name of a simple group or an integer
##  which stands for the product of the sizes of one or more cyclic factors.
##  (In fact, the function replaces all integers among the arguments
##  by their product.)
##
##  The following text strings are accepted as simple group names.
##  \beginlist%unordered
##    \item{$\bullet$} `A<n>' or  `A(<n>)' for the  alternating groups $A_n$,
##      $5\leq n\leq9$, for example `A5' or `A(6)'.
##    \item{$\bullet$}  `L<n>(<q>)'   or  `L(<n>,<q>)' for  $PSL(n,q)$, where
##      $n\in\{2,3\}$ and $q$ a prime power, ranging
##      \itemitem{$\circ$}%unordered
##                         for $n=2$ from 4 to 125
##      \itemitem{$\circ$} for $n=3$ from 2 to 5
##    \item{$\bullet$} `U<n>(<q>)'  or  `U(<n>,<q>)' for   $PSU(n,q)$,  where
##      $n\in\{3,4\}$ and $q$ a prime power, ranging
##      \itemitem{$\circ$}%unordered
##                         for $n=3$ from 3 to 5
##      \itemitem{$\circ$} for $n=4$ from 2 to 2
##    \item{$\bullet$} `Sp4(4)' or `S(4,4)' for the symplectic group $S(4,4)$,
##    \item{$\bullet$} `Sz(8)' for the Suzuki group $Sz(8)$,
##    \item{$\bullet$} `M<n>'  or `M(<n>)' for  the  Mathieu groups $M_{11}$,
##      $M_{12}$, and $M_{22}$, and
##    \item{$\bullet$} `J<n>' or `J(<n>)'   for  the Janko groups  $J_1$  and
##      $J_2$.
##  \endlist
##
##  Note  that, for  most  of the  groups,   the  preceding list  offers  two
##  different  names in order  to  be consistent  with the  notation used  in
##  \cite{HP89}  as     well  as     with    the  notation    used    in  the
##  `DisplayCompositionSeries' command of {\GAP}.   However, as the names are
##  compared  as text strings, you are  restricted to  the above choice. Even
##  expressions like `L2(2^5)' are not accepted.
##
##  As the use of the  term $PSU(n,q)$ is  not  unique in the literature,  we
##  mention that in this library it denotes the factor  group of $SU(n,q)$ by
##  its centre, where $SU(n,q)$ is  the group of all $n  \times n$ unitary
##  matrices  with entries in $GF(q^2)$ and determinant 1.
##
##  The purpose  of the function is  to provide a  simple way to  formulate a
##  loop over all library groups which contain certain composition factors.
##
DeclareGlobalFunction("SizeNumbersPerfectGroups");


#############################################################################
##
#E