1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
#############################################################################
#
#W ree.gd GAP library Alexander Hulpke
##
#H @(#)$Id: ree.gd,v 1.1.4.1 2004/04/28 15:33:07 gap Exp $
##
#Y (C) 2001 School Math. Sci., University of St. Andrews, Scotland
##
Revision.ree_gd :=
"@(#)$Id: ree.gd,v 1.1.4.1 2004/04/28 15:33:07 gap Exp $";
#############################################################################
##
#O ReeGroupCons( <filter>, <q> )
##
DeclareConstructor( "ReeGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F ReeGroup( [<filt>, ] <q> ) . . . . . . . . . . . . . . . Ree group
#F Ree( [<filt>, ] <q> )
##
## Constructs a group isomorphic to the Ree group $2G2(q)$ where
## $q=3^{1+2m}$ for $m$ a non-negative integer.
##
## If <filt> is not given it defaults to `IsMatrixGroup' and
## the generating matrices are based on~\cite{KLM01}.
## (No particular choice of a generating set is guaranteed.)
#
BindGlobal( "ReeGroup", function ( arg )
if Length(arg) = 1 then
return ReeGroupCons( IsMatrixGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return ReeGroupCons( arg[1], arg[2] );
fi;
fi;
Error( "usage: ReeGroup( [<filter>, ] <m> )" );
end );
DeclareSynonym( "Ree", ReeGroup );
#############################################################################
##
#E ree.gd . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|