1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
|
#############################################################################
##
#W algrep.gd GAP library Willem de Graaf
##
#H @(#)$Id: algrep.gd,v 4.19 2002/11/22 15:24:09 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for general modules over algebras.
##
Revision.algrep_gd :=
"@(#)$Id: algrep.gd,v 4.19 2002/11/22 15:24:09 gap Exp $";
#1
## An algebra module is a vector space together with an action of an
## algebra. So a module over an algebra is constructed by giving generators
## of a vector space, and a function for calculating the action of
## algebra elements on elements of the vector space. When creating an
## algebra module, the generators of the vector space are wrapped up and
## given the category `IsLeftAlgebraModuleElement' or
## `IsRightModuleElement' if the algebra acts from the left, or right
## respectively. (So in the case of a bi-module the elements get
## both categories.) Most linear algebra computations are delegated to
## the original vector space.
##
## The transition between the original vector space and the corresponding
## algebra module is handled by `ExtRepOfObj' and `ObjByExtRep'.
## For an element `v' of the algebra module, `ExtRepOfObj( v )' returns
## the underlying element of the original vector space. Furthermore, if `vec'
## is an element of the original vector space, and `fam' the elements
## family of the corresponding algebra module, then `ObjByExtRep( fam, vec )'
## returns the corresponding element of the algebra module. Below is an
## example of this.
##
## The action of the algebra on elements of the algebra module is constructed
## by using the operator `^'. If `x' is an element of an algebra `A', and
## `v' an element of a left `A'-module, then `x^v' calculates the result
## of the action of `x' on `v'. Similarly, if `v' is an element of
## a right `A'-module, then `v^x' calculates the action of `x' on `v'.
##
##############################################################################
##
#C IsAlgebraModuleElement( <obj> )
#C IsAlgebraModuleElementCollection( <obj> )
#C IsAlgebraModuleElementFamily( <fam> )
##
## Category of algebra module elements. If an object has
## `IsAlgebraModuleElementCollection', then it is an algebra module.
## If a family has `IsAlgebraModuleElementFamily', then it is a family
## of algebra module elements (every algebra module has its own elements
## family).
##
DeclareCategory( "IsAlgebraModuleElement", IsVector );
DeclareCategoryCollections( "IsAlgebraModuleElement" );
DeclareCategoryFamily( "IsAlgebraModuleElement" );
##############################################################################
##
#C IsLeftAlgebraModuleElement( <obj> )
#C IsLeftAlgebraModuleElementCollection( <obj> )
##
## Category of left algebra module elements. If an object has
## `IsLeftAlgebraModuleElementCollection', then it is a left-algebra module.
##
DeclareCategory( "IsLeftAlgebraModuleElement", IsAlgebraModuleElement );
DeclareCategoryCollections( "IsLeftAlgebraModuleElement" );
##############################################################################
##
#C IsRightAlgebraModuleElement( <obj> )
#C IsRightAlgebraModuleElementCollection( <obj> )
##
## Category of right algebra module elements. If an object has
## `IsRightAlgebraModuleElementCollection', then it is a right-algebra module.
##
DeclareCategory( "IsRightAlgebraModuleElement", IsAlgebraModuleElement );
DeclareCategoryCollections( "IsRightAlgebraModuleElement" );
##############################################################################
##
#P IsAlgebraModule( <M> )
##
##
DeclareProperty( "IsAlgebraModule", IsLeftModule );
##############################################################################
##
#P IsLeftAlgebraModule( <M> )
##
##
DeclareProperty( "IsLeftAlgebraModule", IsLeftModule );
##############################################################################
##
#P IsRightAlgebraModule( <M> )
##
##
DeclareProperty( "IsRightAlgebraModule", IsLeftModule );
##############################################################################
##
#A LeftActingAlgebra( <V> )
##
## Here <V> is a left-algebra module; this function returns the algebra
## that acts from the left on <V>.
##
DeclareAttribute( "LeftActingAlgebra", IsAlgebraModule );
#############################################################################
##
#A RightActingAlgebra( <V> )
##
## Here <V> is a right-algebra module; this function returns the algebra
## that acts from the right on <V>.
##
DeclareAttribute( "RightActingAlgebra", IsAlgebraModule );
##############################################################################
##
#O ActingAlgebra( <V> )
##
## Here <V> is an algebra module; this function returns the algebra
## that acts on <V> (this is the same as `LeftActingAlgebra( <V> )' if <V> is
## a left module, and `RightActingAlgebra( <V> )' if <V> is a right module;
## it will signal an error if <V> is a bi-module).
##
DeclareOperation( "ActingAlgebra", [ IsAlgebraModule ] );
##############################################################################
##
#A GeneratorsOfAlgebraModule( <M> )
##
## A list of elements of <M> that generate <M> as an algebra module.
##
DeclareAttribute( "GeneratorsOfAlgebraModule", IsAlgebraModule );
##############################################################################
##
#O LeftAlgebraModuleByGenerators( <A>, <op>, <gens> )
##
## Constructs the left algebra module over <A> generated by the list of
## vectors
## <gens>. The action of <A> is described by the function <op>. This must
## be a function of two arguments; the first argument is the algebra element,
## and the second argument is a vector; it outputs the result of applying
## the algebra element to the vector.
##
DeclareOperation( "LeftAlgebraModuleByGenerators", [ IsAlgebra, IS_FUNCTION,
IsHomogeneousList ]);
##############################################################################
##
#O RightAlgebraModuleByGenerators( <A>, <op>, <gens> )
##
## Constructs the right algebra module over <A> generated by the list of
## vectors
## <gens>. The action of <A> is described by the function <op>. This must
## be a function of two arguments; the first argument is a vector, and the
## second argument is the algebra element; it outputs the result of applying
## the algebra element to the vector.
##
DeclareOperation( "RightAlgebraModuleByGenerators", [ IsAlgebra, IS_FUNCTION,
IsHomogeneousList ]);
##############################################################################
##
#O BiAlgebraModuleByGenerators( <A>, <B>, <opl>, <opr>, <gens> )
##
## Constructs the algebra bi-module over <A> and <B> generated by the list of
## vectors
## <gens>. The left action of <A> is described by the function <opl>,
## and the right action of <B> by the function <opr>. <opl> must be a
## function of two arguments; the first argument is the algebra element,
## and the second argument is a vector; it outputs the result of applying
## the algebra element on the left to the vector. <opr> must
## be a function of two arguments; the first argument is a vector, and the
## second argument is the algebra element; it outputs the result of applying
## the algebra element on the right to the vector.
##
DeclareOperation( "BiAlgebraModuleByGenerators", [ IsAlgebra, IsAlgebra,
IS_FUNCTION, IS_FUNCTION, IsHomogeneousList ]);
##############################################################################
##
#O LeftAlgebraModule( <A>, <op>, <V> )
##
## Constructs the left algebra module over <A> with underlying space <V>.
## The action of <A> is described by the function <op>. This must
## be a function of two arguments; the first argument is the algebra element,
## and the second argument is a vector from <V>; it outputs the result of
## applying the algebra element to the vector.
##
DeclareOperation( "LeftAlgebraModule", [ IsAlgebra, IS_FUNCTION,
IsVectorSpace ]);
##############################################################################
##
#O RightAlgebraModule( <A>, <op>, <V> )
##
## Constructs the right algebra module over <A> with underlying space <V>.
## The action of <A> is described by the function <op>. This must
## be a function of two arguments; the first argument is a vector, from <V>
## and the
## second argument is the algebra element; it outputs the result of applying
## the algebra element to the vector.
##
DeclareOperation( "RightAlgebraModule", [ IsAlgebra, IS_FUNCTION,
IsVectorSpace ]);
##############################################################################
##
#O BiAlgebraModule( <A>, <B>, <opl>, <opr>, <V> )
##
## Constructs the algebra bi-module over <A> and <B> with underlying space
## <V>. The left action of <A> is described by the function <opl>,
## and the right action of <B> by the function <opr>. <opl> must be a
## function of two arguments; the first argument is the algebra element,
## and the second argument is a vector from <V>; it outputs the result of
## applying
## the algebra element on the left to the vector. <opr> must
## be a function of two arguments; the first argument is a vector from <V>,
## and the
## second argument is the algebra element; it outputs the result of applying
## the algebra element on the right to the vector.
##
DeclareOperation( "BiAlgebraModule", [ IsAlgebra, IsAlgebra,
IS_FUNCTION, IS_FUNCTION, IsVectorSpace ]);
##############################################################################
##
#C IsBasisOfAlgebraModuleElementSpace( <B> )
##
## If a basis <B> lies in the category `IsBasisOfAlgebraModuleElementSpace',
## then
## <B> is a basis of a subspace of an algebra module. This means that
## <B> has the record field `<B>!.delegateBasis' set. This last object
## is a basis of the corresponding subspace of the vector space underlying
## the algebra module (i.e., the vector
## space spanned by all `ExtRepOfObj( v )' for `v' in
## the algebra module).
##
DeclareCategory( "IsBasisOfAlgebraModuleElementSpace", IsBasis );
##############################################################################
##
#O SubAlgebraModule( <M>, <gens> [,<"basis">] )
##
## is the sub-module of the algebra module <M>, generated by the vectors
## in <gens>. If as an optional argument the string `basis' is added, then
## it is
## assumed that the vectors in <gens> form a basis of the submodule.
##
DeclareOperation( "SubAlgebraModule", [ IsAlgebraModule,
IsAlgebraModuleElementCollection ] );
##############################################################################
##
#O LeftModuleByHomomorphismToMatAlg( <A>, <hom> )
##
## Here <A> is an algebra and <hom> a homomorphism from <A> into a matrix
## algebra. This function returns the left <A>-module defined by the
## homomorphism <hom>.
##
DeclareOperation( "LeftModuleByHomomorphismToMatAlg", [ IsAlgebra,
IsAlgebraHomomorphism ]);
##############################################################################
##
#O RightModuleByHomomorphismToMatAlg( <A>, <hom> )
##
## Here <A> is an algebra and <hom> a homomorphism from <A> into a matrix
## algebra. This function returns the right <A>-module defined by the
## homomorphism <hom>.
##
DeclareOperation( "RightModuleByHomomorphismToMatAlg", [ IsAlgebra,
IsAlgebraHomomorphism ]);
##############################################################################
##
#A AdjointModule( <A> )
##
## returns the <A>-module defined by the left action of <A> on itself.
##
DeclareAttribute( "AdjointModule", IsAlgebra );
##############################################################################
##
#A FaithfulModule( <A> )
##
## returns a faithful finite-dimensional left-module over the algebra <A>.
## This is only implemented for associative algebras, and for Lie algebras
## of characteristic $0$. (It may also work for certain Lie algebras
## of characteristic $p>0$.)
##
DeclareAttribute( "FaithfulModule", IsAlgebra );
##############################################################################
##
#O ModuleByRestriction( <V>, <sub> )
#O ModuleByRestriction( <V>, <subl>, <subr> )
##
## Here <V> is an algebra module and <sub> is a subalgebra
## of the acting algebra of <V>. This function returns the
## module that is the restriction of <V> to <sub>. So it has the
## same underlying vector space as <V>, but the acting algebra is
## <sub>. If two subalgebras are given then <V> is assumed to be a
## bi-module, and <subl> a subalgebra of the algebra acting on the left,
## and <subr> a subalgebra of the algebra acting on the right.
##
DeclareOperation( "ModuleByRestriction", [ IsAlgebraModule, IsAlgebra ] );
##############################################################################
##
#O NaturalHomomorphismBySubAlgebraModule( <V>, <W> )
##
## Here <V> must be a sub-algebra module of <V>. This function returns
## the projection from <V> onto `<V>/<W>'. It is a linear map, that is
## also a module homomorphism. As usual images can be formed with
## `Image( f, v )' and pre-images with `PreImagesRepresentative( f, u )'.
##
## The quotient module can also be formed
## by entering `<V>/<W>'.
##
##
DeclareOperation( "NaturalHomomorphismBySubAlgebraModule", [ IsAlgebraModule,
IsAlgebraModule ] );
##############################################################################
##
#O MatrixOfAction( <B>, <x> )
#O MatrixOfAction( <B>, <x>, <side> )
##
## Here <B> is a basis of an algebra module and <x> is an element
## of the algebra that acts on this module. This function returns
## the matrix of the action of <x> with respect to <B>. If <x> acts
## from the left, then the coefficients of the images of the basis
## elements of <B> (under the action of <x>) are the columns of the output.
## If <x> acts from the
## right, then they are the rows of the output.
##
## If the module is a bi-module, then the third parameter <side> must
## be specified. This is the string `left', or `right' depending whether
## <x> acts from the left or the right.
##
DeclareOperation( "MatrixOfAction", [ IsBasisOfAlgebraModuleElementSpace,
IsObject ] );
#############################################################################
##
#C IsMonomialElement( <obj> )
##
## If the object <obj> lies in the category `IsMonomialElement', then
## it is a linear combination of monomials. This category is used to set
## up some basic functionality and linear algebra for tensor elements,
## wedge elements, symmetric power elements (in order not to have to copy
## esentially the same code for all these elements).
##
DeclareCategory( "IsMonomialElement", IsVector );
DeclareCategoryCollections( "IsMonomialElement" );
DeclareCategoryFamily( "IsMonomialElement" );
#############################################################################
##
#O ConvertToNormalFormMonomialElement( <me> )
##
## Converts the monomial element to some normal form (e.g., if it is a
## tensor element v\otimes w, it will expand v and w on a basis of the
## underlying vector spaces).
##
DeclareOperation( "ConvertToNormalFormMonomialElement",
[ IsMonomialElement ] );
##############################################################################
##
#C IsTensorElement( <obj> )
##
## An element of the tensor product of algebra modules lies in the
## category `IsTensorElement'.
##
DeclareCategory( "IsTensorElement", IsMonomialElement );
DeclareCategoryCollections( "IsTensorElement" );
##############################################################################
##
#O TensorProduct( <list> )
#O TensorProduct( <V>, <W> )
##
## Here <list> must be a list of vector spaces. This function returns
## the tensor product of the elements in the list. The vector spaces
## must be defined over the same field.
##
## In the second form is short for `TensorProduct( [ <V>, <W> ] )'.
##
## Elements of the tensor product $V_1\otimes \cdots \otimes V_k$ are
## linear combinations of $v_1\otimes\cdots \otimes v_k$, where
## the $v_i$ are arbitrary basis elements of $V_i$. In {\GAP} a tensor
## element like that is printed as
## \begintt
## v_1<x> ... <x>v_k
## \endtt
## Furthermore, the zero of a tensor product is printed as
## \begintt
## <0-tensor>
## \endtt
## This does not mean that all tensor products have the
## same zero element: zeros of different tensor products have different
## families.
##
DeclareOperation( "TensorProduct", [ IsList ] );
###############################################################################
##
#O TensorProductOfAlgebraModules( <list> )
#O TensorProductOfAlgebraModules( <V>, <W> )
##
## Here the elements of <list> must be algebra modules.
## The tensor product is returned as an algebra module.
##
DeclareOperation( "TensorProductOfAlgebraModules", [ IsList ] );
###############################################################################
##
#C IsWedgeElement( <obj> )
##
## An element of an exterior power of an algebra module lies in the
## category `IsWedgeElement'.
##
DeclareCategory( "IsWedgeElement", IsMonomialElement );
DeclareCategoryCollections( "IsWedgeElement" );
##############################################################################
##
#O ExteriorPower( <V>, <k> )
##
## Here <V> must be a vector space. This function returns the <k>-th
## exterior power of <V>.
##
## Elements of the exterior power $\bigwedge^k V$ are
## linear combinations of $v_{i_1}\wedge\cdots \wedge v_{i_k}$, where
## the $v_{i_j}$ are basis elements of $V$, and
## $1\leq i_1\<i_2\cdots \<i_k$. In {\GAP} a wedge
## element like that is printed as
## \begintt
## v_1/\ ... /\v_k
## \endtt
## Furthermore, the zero of an exterior power is printed as
## \begintt
## <0-wedge>
## \endtt
## This does not mean that all exterior powers have the
## same zero element: zeros of different exterior powers have different
## families.
##
DeclareOperation( "ExteriorPower", [ IsLeftModule, IsInt ] );
##############################################################################
##
#O ExteriorPowerOfAlgebraModule( <V>, <k> )
##
## Here <V> must be an algebra module, defined over a Lie algebra.
## This function returns the <k>-th exterior power of <V> as an
## algebra module.
##
##
DeclareOperation( "ExteriorPowerOfAlgebraModule", [ IsAlgebraModule, IsInt ] );
##############################################################################
##
#C IsSymmetricPowerElement( <obj> )
##
## An element of a symmetric power of an algebra module lies in the
## category `IsSymmetricPowerElement'.
##
DeclareCategory( "IsSymmetricPowerElement", IsMonomialElement );
DeclareCategoryCollections( "IsSymmetricPowerElement" );
##############################################################################
##
#O SymmetricPower( <V>, <k> )
##
## Here <V> must be a vector space. This function returns the <k>-th
## symmetric power of <V>.
##
DeclareOperation( "SymmetricPower", [ IsLeftModule, IsInt ] );
##############################################################################
##
#O SymmetricPowerOfAlgebraModule( <V>, <k> )
##
## Here <V> must be an algebra module. This function returns the <k>-th
## symmetric power of <V> (as an algebra module).
##
DeclareOperation( "SymmetricPowerOfAlgebraModule",[ IsAlgebraModule,IsInt ]);
##############################################################################
##
#C IsDirectSumElement( <obj> )
##
## An element of the direct sum of algebra modules lies in the category
## `IsDirectSumElement'.
##
DeclareCategory( "IsDirectSumElement", IsVector );
DeclareCategoryCollections( "IsDirectSumElement" );
DeclareCategoryFamily( "IsDirectSumElement" );
##############################################################################
##
#O DirectSumOfAlgebraModules( <list> )
#O DirectSumOfAlgebraModules( <V>, <W> )
##
## Here <list> must be a list of algebra modules. This function returns the
## direct sum of the elements in the list (as an algebra module).
## The modules must be defined over the same algebras.
##
## In the second form is short for `DirectSumOfAlgebraModules( [ <V>, <W> ] )'
##
DeclareOperation( "DirectSumOfAlgebraModules", [ IsList ] );
#############################################################################
##
#C IsSparseRowSpaceElement( <vec> )
#C IsSparseRowSpaceElementCollection( <coll> )
#C IsSparseRowSpaceElementFamily( <fam> )
##
## An object lying in the category `IsSparseRowSpaceElement' is an
## element of a full row space, of which all elements are sparsely
## represented.
##
DeclareCategory( "IsSparseRowSpaceElement", IsVector );
DeclareCategoryCollections( "IsSparseRowSpaceElement" );
DeclareCategoryFamily( "IsSparseRowSpaceElement" );
#T Can this be clean?
#T Elements of row spaces are row vectors,
#T and these are lists, so their family is obviously the collections family
#T of the list entries.
#T The concept of different *representations* for the same object should be
#T used to implement sparse and dense lists;
#T regarding sparse and dense lists as different (and in the case of different
#T families even incomparable) elements may be easy to implement but is not
#T desirable!
#T TB, January 12th, 2000.
##############################################################################
##
#O FullSparseRowSpace( <R>, <n> )
##
## Is the full sparse row space over the ring <R> with dimension <n>.
##
DeclareOperation( "FullSparseRowSpace", [ IsRing, IsInt ] );
#############################################################################
##
#F IsDirectSumElementsSpace( <V> )
##
## ...
##
DeclareHandlingByNiceBasis( "IsDirectSumElementsSpace",
"for free left modules of direct-sum-elements" );
###############################################################################
##
#O TranslatorSubalgebra( <M>, <U>, <W> )
##
## Here <M> is an algebra module, and <U> and <W> are two subspaces of <M>.
## Let <A> be the algebra acting on <M>. This function returns the subspace
## of elements of <A> that map <U> into <W>. If <W> is a sub-algebra-module
## (i.e., closed under the action of <A>), then this space is a subalgebra
## of <A>.
##
## This function works for left, or right modules over a
## finite-dimensional algebra. We
## stress that it is not checked whether <U> and <W> are indeed subspaces
## of <M>. If this is not the case nothing is guaranteed about the behaviour
## of the function.
##
DeclareOperation( "TranslatorSubalgebra",
[ IsAlgebraModule, IsFreeLeftModule, IsFreeLeftModule ] );
#############################################################################
##
#E
|