1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
#############################################################################
##
#W integer.gd GAP library Werner Nickel
#W & Alice Niemeyer
#W & Martin Schoenert
#W & Alex Wegner
##
#H @(#)$Id: integer.gd,v 4.31 2003/09/10 09:47:07 gap Exp $
##
#Y Copyright (C) 1996, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for integers.
##
Revision.integer_gd :=
"@(#)$Id: integer.gd,v 4.31 2003/09/10 09:47:07 gap Exp $";
#############################################################################
##
#C IsIntegers( <obj> )
#C IsPositiveIntegers( <obj> )
#C IsNonnegativeIntegers( <obj> )
##
## are the defining categories for the domains `Integers',
## `PositiveIntegers', and `NonnegativeIntegers'.
##
DeclareCategory( "IsIntegers", IsEuclideanRing and IsFLMLOR );
DeclareCategory( "IsPositiveIntegers", IsSemiringWithOne );
DeclareCategory( "IsNonnegativeIntegers", IsSemiringWithOneAndZero );
#############################################################################
##
#V Integers . . . . . . . . . . . . . . . . . . . . . ring of the integers
#V PositiveIntegers . . . . . . . . . . . . . semiring of positive integers
#V NonnegativeIntegers . . . . . . . . . . semiring of nonnegative integers
##
## These global variables represent the ring of integers and the semirings
## of positive and nonnegative integers, respectively.
##
DeclareGlobalVariable( "Integers", "ring of integers" );
DeclareGlobalVariable( "PositiveIntegers", "semiring of positive integers" );
DeclareGlobalVariable( "NonnegativeIntegers",
"semiring of nonnegative integers" );
#############################################################################
##
#C IsGaussianIntegers( <obj> )
##
## is the defining category for the domain `GaussianIntegers'.
##
DeclareCategory( "IsGaussianIntegers", IsEuclideanRing and IsFLMLOR
and IsFiniteDimensional );
#############################################################################
##
#V GaussianIntegers . . . . . . . . . . . . . . . ring of Gaussian integers
##
## `GaussianIntegers' is the ring $\Z[\sqrt{-1}]$ of Gaussian integers.
## This is a subring of the cyclotomic field `GaussianRationals',
## see~"GaussianRationals".
##
DeclareGlobalVariable( "GaussianIntegers", "ring of Gaussian integers" );
#############################################################################
##
#V Primes . . . . . . . . . . . . . . . . . . . . . . list of small primes
##
## `Primes' is a strictly sorted list of the 168 primes less than 1000.
##
## This is used in `IsPrimeInt' and `FactorsInt' to cast out small primes
## quickly.
##
DeclareGlobalVariable( "Primes", "list of the 168 primes less than 1000" );
#############################################################################
##
#V Primes2 . . . . . . . . . . . . . . . . . . . . . . additional prime list
##
## `Primes2' contains those primes found by `IsPrimeInt' that are not in
## `Primes'. `Primes2' is kept sorted, but may contain holes.
##
## `IsPrimeInt' and `FactorsInt' use this list to cast out already found
## primes quickly.
## If `IsPrimeInt' is called only for random integers this list would be
## quite useless.
## However, users do not behave randomly.
## Instead, it is not uncommon to factor the same integer twice.
## Likewise, once we have tested that $2^{31}-1$ is prime, factoring
## $2^{62}-1$ is very cheap, because the former divides the latter.
##
## This list is initialized to contain at least all those prime factors of
## the integers $2^n-1$ with $n \< 201$, $3^n-1$ with $n \< 101$,
## $5^n-1$ with $n \< 101$, $7^n-1$ with $n \< 91$, $11^n-1$ with $n \< 79$,
## and $13^n-1$ with $n \< 37$ that are larger than $10^7$.
##
DeclareGlobalVariable( "Primes2", "sorted list of large primes" );
#############################################################################
##
#F AbsInt( <n> ) . . . . . . . . . . . . . . . absolute value of an integer
##
## `AbsInt' returns the absolute value of the integer <n>, i.e., <n> if <n>
## is positive, -<n> if <n> is negative and 0 if <n> is 0.
##
## `AbsInt' is a special case of the general operation `EuclideanDegree'
## see~"EuclideanDegree").
##
DeclareGlobalFunction( "AbsInt" );
#############################################################################
##
#F BestQuoInt( <n>, <m> )
##
## `BestQuoInt' returns the best quotient <q> of the integers <n> and <m>.
## This is the quotient such that `<n>-<q>*<m>' has minimal absolute value.
## If there are two quotients whose remainders have the same absolute value,
## then the quotient with the smaller absolute value is chosen.
##
DeclareGlobalFunction( "BestQuoInt" );
#############################################################################
##
#F ChineseRem( <moduli>, <residues> ) . . . . . . . . . . chinese remainder
##
## `ChineseRem' returns the combination of the <residues> modulo the
## <moduli>, i.e., the unique integer <c> from `[0..Lcm(<moduli>)-1]' such
## that `<c> = <residues>[i]' modulo `<moduli>[i]' for all <i>, if it
## exists. If no such combination exists `ChineseRem' signals an error.
##
## Such a combination does exist if and only if
## `<residues>[<i>]=<residues>[<k>]' mod `Gcd(<moduli>[<i>],<moduli>[<k>])'
## for every pair <i>, <k>. Note that this implies that such a combination
## exists if the moduli are pairwise relatively prime. This is called the
## Chinese remainder theorem.
##
DeclareGlobalFunction( "ChineseRem" );
#############################################################################
##
#F CoefficientsQadic( <i>, <q> ) . . . . . . <q>-adic representation of <i>
##
## returns the <q>-adic representation of the integer <i> as a list <l> of
## coefficients where $i = \sum_{j=0} q^j \cdot l[j+1]$.
##
DeclareGlobalFunction( "CoefficientsQadic" );
#############################################################################
##
#F CoefficientsMultiadic( <ints>, <int> )
##
## returns the multiadic expansion of the integer <int> modulo the integers
## given in <ints> (in ascending order).
## It returns a list of coefficients in the *reverse* order to that in <ints>.
##
#T The syntax is quite weird and should be adapted according to
#T `CoefficientsQadic'.
DeclareGlobalFunction( "CoefficientsMultiadic" );
#############################################################################
##
#F DivisorsInt( <n> ) . . . . . . . . . . . . . . . divisors of an integer
##
## `DivisorsInt' returns a list of all divisors of the integer <n>. The
## list is sorted, so that it starts with 1 and ends with <n>. We define
## that `Divisors( -<n> ) = Divisors( <n> )'.
##
## Since the set of divisors of 0 is infinite calling `DivisorsInt( 0 )'
## causes an error.
##
## `DivisorsInt' may call `FactorsInt' to obtain the prime factors.
## `Sigma' and `Tau' (see~"Sigma" and "Tau") compute the sum and the
## number of positive divisors, respectively.
##
DeclareGlobalFunction( "DivisorsInt");
#############################################################################
##
#F FactorsInt( <n> ) . . . . . . . . . . . . . . prime factors of an integer
#F FactorsInt( <n> : RhoTrials := <trials>)
##
## `FactorsInt' returns a list of prime factors of the integer <n>.
##
## If the <i>th power of a prime divides <n> this prime appears <i> times.
## The list is sorted, that is the smallest prime factors come first.
## The first element has the same sign as <n>, the others are positive.
## For any integer <n> it holds that `Product( FactorsInt( <n> ) ) = <n>'.
##
## Note that `FactorsInt' uses a probable-primality test (see~"IsPrimeInt").
## Thus `FactorsInt' might return a list which contains composite integers.
##
## The time taken by `FactorsInt' is approximately proportional to the
## square root of the second largest prime factor of <n>, which is the last
## one that `FactorsInt' has to find, since the largest factor is simply
## what remains when all others have been removed. Thus the time is roughly
## bounded by the fourth root of <n>. `FactorsInt' is guaranteed to find
## all factors less than $10^6$ and will find most factors less than
## $10^{10}$. If <n> contains multiple factors larger than that
## `FactorsInt' may not be able to factor <n> and will then signal an error.
##
## `FactorsInt' is used in a method for the general operation `Factors'.
##
## In the second form, FactorsInt calls FactorsRho with a limit of <trials>
## on the number of trials is performs. The default is 8192.
##
DeclareGlobalFunction( "FactorsInt" );
#############################################################################
##
#F Gcdex( <m>, <n> ) . . . . . . . . . . greatest common divisor of integers
##
## returns a record <g> describing the extended greatest common divisor of
## <m> and <n>.
## The component `gcd' is this gcd,
## the components `coeff1' and `coeff2' are integer cofactors such that
## `<g>.gcd = <g>.coeff1 * <m> + <g>.coeff2 * <n>',
## and the components `coeff3' and `coeff4' are integer cofactors such that
## `0 = <g>.coeff3 * <m> + <g>.coeff4 * <n>'.
##
## If <m> and <n> both are nonzero, `AbsInt( <g>.coeff1 )' is less than or
## equal to `AbsInt(<n>) / (2 * <g>.gcd)' and `AbsInt( <g>.coeff2 )' is less
## than or equal to `AbsInt(<m>) / (2 * <g>.gcd)'.
##
## If <m> or <n> or both are zero `coeff3' is `-<n> / <g>.gcd' and
## `coeff4' is `<m> / <g>.gcd'.
##
## The coefficients always form a unimodular matrix, i.e.,
## the determinant `<g>.coeff1 * <g>.coeff4 - <g>.coeff3 * <g>.coeff2'
## is $1$ or $-1$.
#T not documented in the GAP 3 manual,
#T shall this be an official function in GAP 4?
##
DeclareGlobalFunction( "Gcdex" );
#############################################################################
##
#F IsEvenInt( <n> ) . . . . . . . . . . . . . . . . . . test if <n> is even
##
## tests if the integer <n> is divisible by 2.
##
DeclareGlobalFunction( "IsEvenInt" );
#############################################################################
##
#F IsOddInt( <n> ) . . . . . . . . . . . . . . . . . . . test if <n> is odd
##
## tests if the integer <n> is not divisible by 2.
##
DeclareGlobalFunction( "IsOddInt" );
#############################################################################
##
#F IsPrimeInt( <n> ) . . . . . . . . . . . . . . . . . . . test for a prime
#F IsProbablyPrimeInt( <n> ) . . . . . . . . . . . . . . . test for a prime
##
## `IsPrimeInt' returns `false' if it can prove that <n> is composite and
## `true' otherwise.
## By convention `IsPrimeInt(0) = IsPrimeInt(1) = false'
## and we define `IsPrimeInt( -<n> ) = IsPrimeInt( <n> )'.
##
## `IsPrimeInt' will return `true' for every prime $n$. `IsPrimeInt' will
## return `false' for all composite $n \< 10^{13}$ and for all composite $n$
## that have a factor $p \< 1000$. So for integers $n \< 10^{13}$,
## `IsPrimeInt' is a proper primality test. It is conceivable that
## `IsPrimeInt' may return `true' for some composite $n > 10^{13}$, but no
## such $n$ is currently known. So for integers $n > 10^{13}$, `IsPrimeInt'
## is a probable-primality test. Therefore `IsPrimeInt' will issue a
## warning when called with an argument $>10^{13}$. (The function
## `IsProbablyPrimeInt' will do the same calculations but not issue a
## warning.)
##
## If composites that fool `IsPrimeInt' do
## exist, they would be extremely rare, and finding one by pure chance
## might be
## less likely than finding a bug in {\GAP}.
## We would appreciate being informed about any example of a composite
## number <n> for which `IsPrimeInt' returns `true'.
##
## `IsPrimeInt' is a deterministic algorithm, i.e., the computations involve
## no random numbers, and repeated calls will always return the same result.
## `IsPrimeInt' first does trial divisions by the primes less than 1000.
## Then it tests that $n$ is a strong pseudoprime w.r.t. the base 2.
## Finally it tests whether $n$ is a Lucas pseudoprime w.r.t. the smallest
## quadratic nonresidue of $n$. A better description can be found in the
## comment in the library file `integer.gi'.
##
## The time taken by `IsPrimeInt' is approximately proportional to the third
## power of the number of digits of <n>. Testing numbers with several
## hundreds digits is quite feasible.
##
## `IsPrimeInt' is a method for the general operation `IsPrime'.
##
UnbindGlobal( "IsPrimeInt" );
DeclareGlobalFunction( "IsPrimeInt" );
DeclareGlobalFunction( "IsProbablyPrimeInt" );
#############################################################################
##
#F IsPrimePowerInt( <n> ) . . . . . . . . . . . test for a power of a prime
##
## `IsPrimePowerInt' returns `true' if the integer <n> is a prime power and
## `false' otherwise.
##
## $n$ is a *prime power* if there exists a prime $p$ and a positive integer
## $i$ such that $p^i = n$. If $n$ is negative the condition is that there
## must exist a negative prime $p$ and an odd positive integer $i$ such that
## $p^i = n$. 1 and -1 are not prime powers.
##
## Note that `IsPrimePowerInt' uses `SmallestRootInt' (see
## "SmallestRootInt") and a probable-primality test (see "IsPrimeInt").
##
DeclareGlobalFunction( "IsPrimePowerInt" );
#############################################################################
##
#F LcmInt( <m>, <n> ) . . . . . . . . . . least common multiple of integers
##
## returns the least common multiple of the integers <m> and <n>.
##
## `LcmInt' is a method used by the general function `Lcm'.
##
DeclareGlobalFunction( "LcmInt" );
#############################################################################
##
#F LogInt( <n>, <base> ) . . . . . . . . . . . . . . logarithm of an integer
##
## `LogInt' returns the integer part of the logarithm of the positive
## integer <n> with respect to the positive integer <base>, i.e., the
## largest positive integer <exp> such that $base^{exp} \leq n$. `LogInt'
## will signal an error if either <n> or <base> is not positive.
##
## For <base> $2$ this is very efficient because the internal binary
## representation of the integer is used.
##
DeclareGlobalFunction( "LogInt" );
#############################################################################
##
#F NextPrimeInt( <n> ) . . . . . . . . . . . . . . . . . . next larger prime
##
## `NextPrimeInt' returns the smallest prime which is strictly larger than
## the integer <n>.
##
## Note that `NextPrimeInt' uses a probable-primality test (see
## "IsPrimeInt").
##
DeclareGlobalFunction( "NextPrimeInt" );
#############################################################################
##
#F PowerModInt( <r>, <e>, <m> ) . . . . power of one integer modulo another
##
## returns $r^e\pmod{m}$ for integers <r>,<e> and <m> ($e\ge 0$).
## Note that using `<r> ^ <e> mod <m>' will generally be slower,
## because it can not reduce intermediate results the way `PowerModInt'
## does but would compute `<r>^<e>' first and then reduce the result
## afterwards.
##
## `PowerModInt' is a method for the general operation `PowerMod'.
##
DeclareGlobalFunction( "PowerModInt" );
#############################################################################
##
#F PrevPrimeInt( <n> ) . . . . . . . . . . . . . . . previous smaller prime
##
## `PrevPrimeInt' returns the largest prime which is strictly smaller than
## the integer <n>.
##
## Note that `PrevPrimeInt' uses a probable-primality test (see
## "IsPrimeInt").
##
DeclareGlobalFunction( "PrevPrimeInt" );
#############################################################################
##
#F PrimePowersInt( <n> ) . . . . . . . . . . . . . . . . prime powers of <n>
##
## returns the prime factorization of the integer <n> as a list
## $[ p_1, e_1, \ldots, p_n, e_n ]$ with $n = \prod_{i=1}^n p_i^{e_i}$.
##
DeclareGlobalFunction( "PrimePowersInt" );
#############################################################################
##
#F RootInt( <n> ) . . . . . . . . . . . . . . . . . . . root of an integer
#F RootInt( <n>, <k> )
##
## `RootInt' returns the integer part of the <k>th root of the integer <n>.
## If the optional integer argument <k> is not given it defaults to 2, i.e.,
## `RootInt' returns the integer part of the square root in this case.
##
## If <n> is positive, `RootInt' returns the largest positive integer $r$
## such that $r^k \leq n$. If <n> is negative and <k> is odd `RootInt'
## returns `-RootInt( -<n>, <k> )'. If <n> is negative and <k> is even
## `RootInt' will cause an error. `RootInt' will also cause an error if <k>
## is 0 or negative.
##
DeclareGlobalFunction( "RootInt" );
#############################################################################
##
#F SignInt( <n> ) . . . . . . . . . . . . . . . . . . . sign of an integer
##
## `SignInt' returns the sign of the integer <n>, i.e., 1 if <n> is
## positive, -1 if <n> is negative and 0 if <n> is 0.
##
DeclareGlobalFunction( "SignInt" );
#T attribute `Sign' (also for e.g. permutations)?
#T should be internal method!
#############################################################################
##
#F SmallestRootInt( <n> ) . . . . . . . . . . . smallest root of an integer
##
## `SmallestRootInt' returns the smallest root of the integer <n>.
##
## The smallest root of an integer $n$ is the integer $r$ of smallest
## absolute value for which a positive integer $k$ exists such that $n =
## r^k$.
##
DeclareGlobalFunction( "SmallestRootInt" );
#############################################################################
##
#F PrintFactorsInt( <n> ) . . . . . . . . print factorization of an integer
##
## prints the prime factorization of the integer <n> in human-readable
## form.
##
DeclareGlobalFunction( "PrintFactorsInt" );
#############################################################################
##
#F PowerDecompositions( <n> )
##
## returns a list of all nontrivial decompositions of the integer <n> as a
## power of integers.
##
DeclareGlobalFunction( "PowerDecompositions" );
#############################################################################
##
#E integer.gd . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|