File: mapping.gd

package info (click to toggle)
gap 4r4p4-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 25,972 kB
  • ctags: 6,672
  • sloc: ansic: 95,121; sh: 3,137; makefile: 219; perl: 11; awk: 6
file content (899 lines) | stat: -rw-r--r-- 36,565 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
#############################################################################
##
#W  mapping.gd                  GAP library                     Thomas Breuer
#W                                                         & Martin Schoenert
#W                                                             & Frank Celler
##
#H  @(#)$Id: mapping.gd,v 4.53 2002/04/15 10:04:56 sal Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for general mappings.
##

#1
##  A *general mapping* $F$ in {\GAP} is described by
##  its source $S$, its range $R$, and a subset $Rel$ of the direct product
##  $S \times R$, which is called the underlying relation of $F$.
##  $S$, $R$, and $Rel$ are generalized domains (see Chapter~"Domains").
##  The corresponding attributes for general mappings are `Source', `Range',
##  and `UnderlyingRelation'.
#T what about the family predicates if the source/range is not a
#T collection?
##
##  Note that general mappings themselves are *not* domains.
##  One reason for this is that two general mappings with same underlying
##  relation are regarded as equal only if also the sources are equal and
##  the ranges are equal.
##  Other, more technical, reasons are that general mappings and domains
##  have different basic operations, and that general mappings are
##  arithmetic objects (see~"Arithmetic Operations for General Mappings");
##  both should not apply to domains.
##
##  Each element of an underlying relation of a general mapping lies in the
##  category of tuples (see~"IsTuple").
##
##  For each $s \in S$, the set $\{ r \in R | (s,r) \in Rel \}$
##  is called the set of *images* of $s$.
##  Analogously, for $r \in R$, the set $\{ s \in S | (s,r) \in Rel \}$
##  is called the set of *preimages* of $r$.
##
##  The *ordering* of general mappings via `\<' is defined by the ordering
##  of source, range, and underlying relation. Specifically, if the Source
##  and Range domains of <map1> and <map2> are the same, then one considers 
##  the union of the preimages of <map1> and <map2> as a strictly ordered set.
##  The smaller of <map1> and <map2> is the one whose image is smaller on the 
##  first point of this sequence where they differ.
##

#2
##  `Source' and `Range' are basic operations for general mappings.
##  `UnderlyingRelation' is secondary, its default method sets up a
##  domain that delegates tasks to the general mapping.
##  (Note that this allows one to handle also infinite relations by generic
##  methods if source or range of the general mapping is finite.)
##
##  The distinction between basic operations and secondary operations for
##  general mappings may be a little bit complicated.
##  Namely, each general mapping must be in one of the two categories
##  `IsNonSPGeneralMapping', `IsSPGeneralMapping'.
##  (The category `IsGeneralMapping' is defined as the disjoint union
##  of these two.)
##
##  For general mappings of the first category, `ImagesElm' and
##  `PreImagesElm' are basic operations.
##  (Note that in principle it is possible to delegate from `PreImagesElm'
##  to `ImagesElm'.)
##  Methods for the secondary operations `(Pre)ImageElm', `(Pre)ImagesSet',
##  and `(Pre)ImagesRepresentative' may use `(Pre)ImagesElm',
##  and methods for `(Pre)ImagesElm' must not call the secondary operations.
##  In particular, there are no generic methods for `(Pre)ImagesElm'.
##
##  Methods for `(Pre)ImagesSet' must *not* use `PreImagesRange' and
##  `ImagesSource', e.g., compute the intersection of the set in question
##  with the preimage of the range resp. the image of the source.
##
##  For general mappings of the second category (which means structure
##  preserving general mappings), the situation is different.
##  The set of preimages under a group homomorphism, for example, is either
##  empty or can be described as a coset of the (multiplicative) kernel.
##  So it is reasonable to have `(Pre)ImagesRepresentative' and
##  `Multplicative(Co)Kernel' as basic operations here,
##  and to make `(Pre)ImagesElm' secondary operations
##  that may delegate to these.
##  
##  In order to avoid infinite recursions,
##  we must distinguish between the two different types of mappings.
##
##  (Note that the basic domain operations such as `AsList' for the
##  underlying relation of a general mapping may use either `ImagesElm'
##  or `ImagesRepresentative' and the appropriate cokernel.
##  Conversely, if `AsList' for the underlying relation is known then
##  `ImagesElm' resp. `ImagesRepresentative' may delegate to it, the general
##  mapping gets the property `IsConstantTimeAccessGeneralMapping' for this;
##  note that this is not allowed if only an enumerator of the underlying
##  relation is known.)
##
##  Secondary operations are
##  `IsInjective', `IsSingleValued', `IsSurjective', `IsTotal';
##  they may use the basic operations, and must not be used by them.
##

#3
##  General mappings are arithmetic objects.
##  One can form groups and vector spaces of general mappings provided
##  that they are invertible or can be added and admit scalar multiplication,
##  respectively.
##
##  For two general mappings with same source, range, preimage, and image,
##  the *sum* is defined pointwise, i.e., the images of a point under the sum
##  is the set of all sums with first summand in the images of the first
##  general mapping and second summand in the images of the second general
##  mapping.
##
##  *Scalar multiplication* of general mappings is defined likewise.
##
##  The *product* of two general mappings is defined as the composition.
##  This multiplication is always associative.
##  In addition to the composition via `\*', general mappings can be composed
##  --in reversed order-- via `CompositionMapping'.
##
##  General mappings are in the category of multiplicative elements with
##  inverses.
##  Similar to matrices, not every general mapping has an inverse or an
##  identity, and we define the behaviour of `One' and `Inverse' for
##  general mappings as follows.
##  `One' returns `fail' when called for a general mapping whose source and
##  range differ, otherwise `One' returns the identity mapping of the source.
##  (Note that the source may differ from the preimage).
##  `Inverse' returns `fail' when called for a non-bijective general mapping
##  or for a general mapping whose source and range differ; otherwise
##  `Inverse' returns the inverse mapping.
##
##  Besides the usual inverse of multiplicative elements, which means that
##  `Inverse( <g> ) \* <g> = <g> \* Inverse( <g> ) = One( <g> )',
##  for general mappings we have the attribute `InverseGeneralMapping'.
##  If <F> is a general mapping with source $S$, range $R$, and underlying
##  relation $Rel$ then `InverseGeneralMapping( <F> )' has source $R$,
##  range $S$, and underlying relation $\{ (r,s) \mid (s,r) \in Rel \}$.
##  For a general mapping that has an inverse in the usual sense,
##  i.e., for a bijection of the source, of course both concepts coincide.
##
##  `Inverse' may delegate to `InverseGeneralMapping'.
##  `InverseGeneralMapping' must not delegate to `Inverse', but a known
##  value of `Inverse' may be fetched.
##  So methods to compute the inverse of a general mapping should be
##  installed for `InverseGeneralMapping'.
##
##  (Note that in many respects, general mappings behave similar to matrices,
##  for example one can define left and right identities and inverses, which
##  do not fit into the current concepts of {\GAP}.)
##

#4
##  Methods for the operations `ImagesElm', `ImagesRepresentative',
##  `ImagesSet', `ImageElm', `PreImagesElm', `PreImagesRepresentative',
##  `PreImagesSet', and `PreImageElm' take two arguments, a general mapping
##  <map> and an element or collection of elements <elm>.
##  These methods must *not* check whether <elm> lies in the source or the
##  range of <map>.
##  In the case that <elm> does not, `fail' may be returned as well as any
##  other {\GAP} object, and even an error message is allowed.
##  Checks of the arguments are done only by the functions `Image', `Images',
##  `PreImage', and `PreImages', which then delegate to the operations listed
##  above.
##
Revision.mapping_gd :=
    "@(#)$Id: mapping.gd,v 4.53 2002/04/15 10:04:56 sal Exp $";


#############################################################################
##
#C  IsGeneralMapping( <map> )
##
##  Each general mapping lies in the category `IsGeneralMapping'.
##  It implies the categories `IsMultiplicativeElementWithInverse'
##  (see~"IsMultiplicativeElementWithInverse")
##  and `IsAssociativeElement' (see~"IsAssociativeElement");
##  for a discussion of these implications,
##  see~"Arithmetic Operations for General Mappings".
##
DeclareCategory( "IsGeneralMapping",
    IsMultiplicativeElementWithInverse and IsAssociativeElement );


#############################################################################
##
#C  IsSPGeneralMapping( <map> )
#C  IsNonSPGeneralMapping( <map> )
##
#T  What we want to express is that `IsGeneralMapping' is the disjoint union
#T  of `IsSPGeneralMapping' and `IsNonSPGeneralMapping'.
##
DeclareCategory( "IsSPGeneralMapping", IsGeneralMapping );
DeclareCategory( "IsNonSPGeneralMapping", IsGeneralMapping );


#############################################################################
##
#C  IsGeneralMappingCollection( <obj> )
##
DeclareCategoryCollections( "IsGeneralMapping" );


#############################################################################
##
#C  IsGeneralMappingFamily( <obj> )
##
DeclareCategoryFamily( "IsGeneralMapping" );


#############################################################################
##
#A  FamilyRange( <Fam> )
##
##  is the elements family of the family of the range of each general
##  mapping in the family <Fam>.
##
DeclareAttribute( "FamilyRange", IsGeneralMappingFamily );


#############################################################################
##
#A  FamilySource( <Fam> )
##
##  is the elements family of the family of the source of each general
##  mapping in the family <Fam>.
##
DeclareAttribute( "FamilySource", IsGeneralMappingFamily );


#############################################################################
##
#A  FamiliesOfGeneralMappingsAndRanges( <Fam> )
##
##  is a list that stores at the odd positions the families of general
##  mappings with source in the family <Fam>, at the even positions the
##  families of ranges of the general mappings.
##
DeclareAttribute( "FamiliesOfGeneralMappingsAndRanges",
    IsFamily, "mutable" );


#############################################################################
##
#P  IsConstantTimeAccessGeneralMapping( <map> )
##
##  is `true' if the underlying relation of the general mapping <map>
##  knows its `AsList' value, and `false' otherwise.
##
##  In the former case, <map> is allowed to use this list for calls to
##  `ImagesElm' etc.
##
DeclareProperty( "IsConstantTimeAccessGeneralMapping", IsGeneralMapping );


#############################################################################
##
#P  IsEndoGeneralMapping( <obj> )
##
##  If a general mapping has this property then its source and range are
##  equal.
##
DeclareProperty( "IsEndoGeneralMapping", IsGeneralMapping );

#############################################################################
##
#P  IsTotal( <map> )  . . . . . . . . test whether a general mapping is total
##
##  is `true' if each element in the source $S$ of the general mapping <map>
##  has images, i.e.,
##  $s^{<map>} \not= \emptyset$ for all $s\in S$,
##  and `false' otherwise.
##
DeclareProperty( "IsTotal", IsGeneralMapping );


#############################################################################
##
#P  IsSingleValued( <map> ) . test whether a general mapping is single-valued
##
##  is `true' if each element in the source $S$ of the general mapping <map>
##  has at most one image, i.e.,
##  $|s^{<map>}| \leq 1$ for all $s\in S$,
##  and `false' otherwise.
##
##  Equivalently, `IsSingleValued( <map> )' is `true' if and only if
##  the preimages of different elements in $R$ are disjoint.
##
DeclareProperty( "IsSingleValued", IsGeneralMapping );


#############################################################################
##
#P  IsMapping( <map> )
##
##  A *mapping* <map> is a general mapping that assigns to each element `elm'
##  of its source a unique element `Image( <map>, <elm> )' of its range.
##
##  Equivalently, the general mapping <map> is a mapping if and only if it is
##  total and single-valued (see~"IsTotal", "IsSingleValued").
##
DeclareSynonymAttr( "IsMapping",
    IsGeneralMapping and IsTotal and IsSingleValued );



#############################################################################
##
#P  IsEndoMapping( <obj> )
##
##  If a mapping has this property then its source and range are
##  equal and it is single valued.
##
DeclareSynonymAttr( "IsEndoMapping", IsMapping and IsEndoGeneralMapping );


#############################################################################
##
#P  IsInjective( <map> )  . . . . . .  test if a general mapping is injective
##
##  is `true' if the images of different elements in the source $S$ of the
##  general mapping <map> are disjoint, i.e.,
##  $x^{<map>} \cap y^{<map>} = \emptyset$ for $x\not= y\in S$,
##  and `false' otherwise.
##
##  Equivalently, `IsInjective( <map> )' is `true' if and only if each
##  element in the range of <map> has at most one preimage in $S$.
##
DeclareProperty( "IsInjective", IsGeneralMapping );


#############################################################################
##
#P  IsSurjective( <map> ) . . . . . . test if a general mapping is surjective
##
##  is `true' if each element in the range $R$ of the general mapping <map>
##  has preimages in the source $S$ of <map>, i.e.,
##  $\{ s\in S \mid x\in s^{<map>} \} \not= \emptyset$ for all $x\in R$,
##  and `false' otherwise.
##
DeclareProperty( "IsSurjective", IsGeneralMapping );


#############################################################################
##
#P  IsBijective( <map> )  . . . . . .  test if a general mapping is bijective
##
##  A general mapping <map> is *bijective* if and only if it is an injective
##  and surjective mapping (see~"IsMapping", "IsInjective", "IsSurjective").
##
DeclareSynonymAttr( "IsBijective",
    IsSingleValued and IsTotal and IsInjective and IsSurjective );


#############################################################################
##
#A  Range( <map> )  . . . . . . . . . . . . . . .  range of a general mapping
##
DeclareAttribute( "Range", IsGeneralMapping );


#############################################################################
##
#A  Source( <map> ) . . . . . . . . . . . . . . . source of a general mapping
##
DeclareAttribute( "Source", IsGeneralMapping );


#############################################################################
##
#A  UnderlyingRelation( <map> ) . .  underlying relation of a general mapping
##
##  The *underlying relation* of a general mapping <map> is the domain
##  of pairs $(s,r)$, with $s$ in the source and $r$ in the range of <map>
##  (see~"Source", "Range"), and $r\in$`ImagesElm( <map>, $s$ )'.
##
##  Each element of the underlying relation is a tuple (see~"IsTuple").
##
DeclareAttribute( "UnderlyingRelation", IsGeneralMapping );


#############################################################################
##
#A  UnderlyingGeneralMapping( <map> )
##
##  attribute for underlying relations of general mappings
##
DeclareAttribute( "UnderlyingGeneralMapping", IsCollection );


#############################################################################
##
#F  GeneralMappingsFamily( <sourcefam>, <rangefam> )
##
##  All general mappings with same source family <FS> and same range family
##  <FR> lie in the family `GeneralMappingsFamily( <FS>, <FR> )'.
##
DeclareGlobalFunction( "GeneralMappingsFamily" );


#############################################################################
##
#F  TypeOfDefaultGeneralMapping( <source>, <range>, <filter> )
##
##  is the type of mappings with `IsDefaultGeneralMappingRep' with source
##  <source> and range <range> and additional categories <filter>.
##
DeclareGlobalFunction( "TypeOfDefaultGeneralMapping" );


#############################################################################
##
#A  IdentityMapping( <D> )  . . . . . . . .  identity mapping of a collection
##
##  is the bijective mapping with source and range equal to the collection
##  <D>, which maps each element of <D> to itself.
##
DeclareAttribute( "IdentityMapping", IsCollection );


#############################################################################
##
#A  InverseGeneralMapping( <map> )
##
##  The *inverse general mapping* of a general mapping <map> is the general
##  mapping whose underlying relation (see~"UnderlyingRelation") contains a
##  pair $(r,s)$ if and only if the underlying relation of <map> contains
##  the pair $(s,r)$.
##
##  See the introduction to Chapter~"Mappings" for the subtleties concerning
##  the difference between `InverseGeneralMapping' and `Inverse'.
##
##  Note that the inverse general mapping of a mapping <map> is in general
##  only a general mapping.
##  If <map> knows to be bijective its inverse general mapping will know to
##  be a mapping.
##  In this case also `Inverse( <map> )' works.
##
DeclareAttribute( "InverseGeneralMapping", IsGeneralMapping );


#############################################################################
##
#A  ImagesSource( <map> )
##
##  is the set of images of the source of the general mapping <map>.
##
##  `ImagesSource' delegates to `ImagesSet',
##  it is introduced only to store the image of <map> as attribute value.
##
DeclareAttribute( "ImagesSource", IsGeneralMapping );


#############################################################################
##
#A  PreImagesRange( <map> )
##
##  is the set of preimages of the range of the general mapping <map>.
##
##  `PreImagesRange' delegates to `PreImagesSet',
##  it is introduced only to store the preimage of <map> as attribute value.
##
DeclareAttribute( "PreImagesRange", IsGeneralMapping );


#############################################################################
##
#O  ImagesElm( <map>, <elm> ) . . . all images of an elm under a gen. mapping
##
##  If <elm> is an element of the source of the general mapping <map> then
##  `ImagesElm' returns the set of all images of <elm> under <map>.
##
##  Anything may happen if <elm> is not an element of the source of <map>.
##
DeclareOperation( "ImagesElm", [ IsGeneralMapping, IsObject ] );


#############################################################################
##
#O  ImagesRepresentative(<map>,<elm>) . one image of elm under a gen. mapping
##
##  If <elm> is an element of the source of the general mapping <map> then
##  `ImagesRepresentative' returns either a representative of the set of
##  images of <elm> under <map> or `fail', the latter if and only if <elm>
##  has no images under <map>.
##
##  Anything may happen if <elm> is not an element of the source of <map>.
##
DeclareOperation( "ImagesRepresentative", [ IsGeneralMapping, IsObject ] );


#############################################################################
##
#O  ImagesSet( <map>, <elms> )
##
##  If <elms> is a subset of the source of the general mapping <map> then
##  `ImagesSet' returns the set of all images of <elms> under <map>.
##
##  Anything may happen if <elms> is not a subset of the source of <map>.
##
DeclareOperation( "ImagesSet", [ IsGeneralMapping, IsCollection ] );


#############################################################################
##
#O  ImageElm( <map>, <elm> )  . . . .  unique image of an elm under a mapping
##
##  If <elm> is an element of the source of the total and single-valued
##  mapping <map> then
##  `ImageElm' returns the unique image of <elm> under <map>.
##
##  Anything may happen if <elm> is not an element of the source of <map>.
##
DeclareOperation( "ImageElm", [ IsMapping, IsObject ] );


#############################################################################
##
#F  Image( <map> )  . . . .  set of images of the source of a general mapping
#F  Image( <map>, <elm> ) . . . .  unique image of an element under a mapping
#F  Image( <map>, <coll> )  . . set of images of a collection under a mapping
##
##  `Image( <map> )' is the image of the general mapping <map>, i.e.,
##  the subset of elements of the range of <map> that are actually values of
##  <map>.
##  Note that in this case the argument may also be multi-valued.
##
##  `Image( <map>, <elm> )' is the image of the element <elm> of the source
##  of the mapping <map> under <map>, i.e., the unique element of the range
##  to which <map> maps <elm>.
##  This can also be expressed as `<elm> ^ <map>'.
##  Note that <map> must be total and single valued, a multi valued general
##  mapping is not allowed (see~"Images").
##
##  `Image( <map>, <coll> )' is the image of the subset <coll> of the source
##  of the mapping <map> under <map>, i.e., the subset of the range
##  to which <map> maps elements of <coll>.
##  <coll> may be a proper set or a domain.
##  The result will be either a proper set or a domain.
##  Note that in this case <map> may also be multi-valued.
##  (If <coll> and the result are lists then the positions of
##  entries do in general *not* correspond.)
##
##  `Image' delegates to `ImagesSource' when called with one argument,
##  and to `ImageElm' resp. `ImagesSet' when called with two arguments.
##
##  If the second argument is not an element or a subset of the source of
##  the first argument, an error is signalled.
##
DeclareGlobalFunction( "Image" );


#############################################################################
##
#F  Images( <map> ) . . . .  set of images of the source of a general mapping
#F  Images( <map>, <elm> )  . . . set of images of an element under a mapping
#F  Images( <map>, <coll> ) . . set of images of a collection under a mapping
##
##  `Images( <map> )' is the image of the general mapping <map>, i.e.,
##  the subset of elements of the range of <map> that are actually values of
##  <map>.
##
##  `Images( <map>, <elm> )' is the set of images of the element <elm> of
##  the source of the general mapping <map> under <map>, i.e., the set of
##  elements of the range to which <map> maps <elm>.
##
##  `Images( <map>, <coll> )' is the set of images of the subset <coll> of
##  the source of the general mapping <map> under <map>, i.e., the subset
##  of the range to which <map> maps elements of <coll>.
##  <coll> may be a proper set or a domain.
##  The result will be either a proper set or a domain.
##  (If <coll> and the result are lists then the positions of
##  entries do in general *not* correspond.)
##
##  `Images' delegates to `ImagesSource' when called with one argument,
##  and to `ImagesElm' resp. `ImagesSet' when called with two arguments.
##
##  If the second argument is not an element or a subset of the source of
##  the first argument, an error is signalled.
##
DeclareGlobalFunction( "Images" );


#############################################################################
##
#O  PreImagesElm( <map>, <elm> )  . all preimages of elm under a gen. mapping
##
##  If <elm> is an element of the range of the general mapping <map> then
##  `PreImagesElm' returns the set of all preimages of <elm> under <map>.
##
##  Anything may happen if <elm> is not an element of the range of <map>.
##
DeclareOperation( "PreImagesElm", [ IsGeneralMapping, IsObject ] );


#############################################################################
##
#O  PreImageElm( <map>, <elm> )
##
##  If <elm> is an element of the range of the injective and surjective
##  general mapping <map> then
##  `PreImageElm' returns the unique preimage of <elm> under <map>.
##
##  Anything may happen if <elm> is not an element of the range of <map>.
##
DeclareOperation( "PreImageElm",
    [ IsGeneralMapping and IsInjective and IsSurjective, IsObject ] );


#############################################################################
##
#O  PreImagesRepresentative( <map>, <elm> ) . . .  one preimage of an element
##                                                       under a gen. mapping
##
##  If <elm> is an element of the range of the general mapping <map> then
##  `PreImagesRepresentative' returns either a representative of the set of
##  preimages of <elm> under <map> or `fail', the latter if and only if <elm>
##  has no preimages under <map>.
##
##  Anything may happen if <elm> is not an element of the range of <map>.
##
DeclareOperation( "PreImagesRepresentative",
    [ IsGeneralMapping, IsObject ] );


#############################################################################
##
#O  PreImagesSet( <map>, <elms> )
##
##  If <elms> is a subset of the range of the general mapping <map> then
##  `PreImagesSet' returns the set of all preimages of <elms> under <map>.
##
##  Anything may happen if <elms> is not a subset of the range of <map>.
##
DeclareOperation( "PreImagesSet", [ IsGeneralMapping, IsCollection ] );


#############################################################################
##
#F  PreImage( <map> ) . .  set of preimages of the range of a general mapping
#F  PreImage( <map>, <elm> )  . unique preimage of an elm under a gen.mapping
#F  PreImage(<map>,<coll>)   set of preimages of a coll. under a gen. mapping
##
##  `PreImage( <map> )' is the preimage of the general mapping <map>, i.e.,
##  the subset of elements of the source of <map> that actually have values
##  under <map>.
##  Note that in this case the argument may also be non-injective or
##  non-surjective.
##
##  `PreImage( <map>, <elm> )' is the preimage of the element <elm> of the
##  range of the injective and surjective mapping <map> under <map>, i.e.,
##  the unique element of the source which is mapped under <map> to <elm>.
##  Note that <map> must be injective and surjective (see~"PreImages").
##
##  `PreImage( <map>, <coll> )' is the preimage of the subset <coll> of the
##  range of the general mapping <map> under <map>, i.e., the subset of the
##  source which is mapped under <map> to elements of <coll>.
##  <coll> may be a proper set or a domain.
##  The result will be either a proper set or a domain.
##  Note that in this case <map> may also be non-injective or
##  non-surjective.
##  (If <coll> and the result are lists then the positions of
##  entries do in general *not* correspond.)
##
##  `PreImage' delegates to `PreImagesRange' when called with one argument,
##  and to `PreImageElm' resp. `PreImagesSet' when called with two arguments.
##
##  If the second argument is not an element or a subset of the range of
##  the first argument, an error is signalled.
##
DeclareGlobalFunction( "PreImage" );


#############################################################################
##
#F  PreImages( <map> )  . . . set of preimages of the range of a gen. mapping
#F  PreImages(<map>,<elm>)  . set of preimages of an elm under a gen. mapping
#F  PreImages(<map>,<coll>)  set of preimages of a coll. under a gen. mapping
##
##  `PreImages( <map> )' is the preimage of the general mapping <map>, i.e.,
##  the subset of elements of the source of <map> that have actually values
##  under <map>.
##
##  `PreImages( <map>, <elm> )' is the set of preimages of the element <elm>
##  of the range of the general mapping <map> under <map>, i.e., the set of
##  elements of the source which <map> maps to <elm>.
##
##  `PreImages( <map>, <coll> )' is the set of images of the subset <coll> of
##  the range of the general mapping <map> under <map>, i.e., the subset
##  of the source which <map> maps to elements of <coll>.
##  <coll> may be a proper set or a domain.
##  The result will be either a proper set or a domain.
##  (If <coll> and the result are lists then the positions of
##  entries do in general *not* correspond.)
##
##  `PreImages' delegates to `PreImagesRange' when called with one argument,
##  and to `PreImagesElm' resp. `PreImagesSet' when called with two
##  arguments.
##
##  If the second argument is not an element or a subset of the range of
##  the first argument, an error is signalled.
##
DeclareGlobalFunction( "PreImages" );


#############################################################################
##
#O  CompositionMapping2(<map2>,<map1>)  . . . composition of general mappings
##
##  `CompositionMapping2' returns the composition of <map2> and <map1>,
##  this is the general mapping that maps an element first under <map1>,
##  and then maps the images under <map2>.
##
##  (Note the reverse ordering of arguments in the composition via `\*'.
##
DeclareOperation( "CompositionMapping2",
    [ IsGeneralMapping, IsGeneralMapping ] );


#############################################################################
##
#F  CompositionMapping( <map1>, <map2>, ... ) . . . . composition of mappings
##
##  `CompositionMapping' allows one to compose arbitrarily many general
##  mappings, and delegates each step to `CompositionMapping2'.
##
##  Additionally, the properties `IsInjective' and `IsSingleValued' are
##  maintained; if the source of the $i+1$-th general mapping is identical to
##  the range of the $i$-th general mapping, also `IsTotal' and
##  `IsSurjective' are maintained.
##  (So one should not call `CompositionMapping2' directly if one wants to
##  maintain these properties.)
##
##  Depending on the types of <map1> and <map2>, the returned mapping might
##  be constructed completely new (for example by giving domain generators
##  and their images, this is for example the case if both mappings preserve
##  the same alagebraic structures and {\GAP} can decompose elements of the
##  source of <map2> into generators) or as an (iterated) composition
##  (see~"IsCompositionMappingRep").
DeclareGlobalFunction( "CompositionMapping" );

#############################################################################
##
#R  IsCompositionMappingRep( <map> )
##
##  Mappings in this representation are stored as composition of two
##  mappings, (pre)images of elements are computed in a two-step process.
##  The constituent mappings of the composition can be obtained via
##  `ConstituentsCompositionMapping'.
DeclareRepresentation( "IsCompositionMappingRep",
    IsGeneralMapping and IsAttributeStoringRep, [ "map1", "map2" ] );

#############################################################################
##
#F  ConstituentsCompositionMapping( <map> )
##
##  If <map> is stored in the representation `IsCompositionMappingRep' as
##  composition of two mappings <map1> and <map2>, this function returns the
##  two constituent mappings in a list [<map1>,<map2>].
DeclareGlobalFunction( "ConstituentsCompositionMapping" );

#############################################################################
##
#O  ZeroMapping( <S>, <R> ) . . . . . . . . . .  zero mapping from <S> to <R>
##
##  A zero mapping is a total general mapping that maps each element of its
##  source to the zero element of its range.
##
##  (Each mapping with empty source is a zero mapping.)
##
DeclareOperation( "ZeroMapping", [ IsCollection, IsCollection ] );


#############################################################################
##
#O  RestrictedMapping( <map>, <subdom> )
##
##  If <subdom> is a subdomain of the source of the general mapping <map>,
##  this operation returns the restriction of <map> to <subdom>.
#T  The general concept of restricted general mappings still missing.
##
DeclareOperation( "RestrictedMapping", [ IsGeneralMapping, IsDomain ] );


#############################################################################
##
#O  Embedding( <S>, <T> ) . . . . . . .  embedding of one domain into another
#O  Embedding( <S>, <i> )
##
##  returns the embedding of the domain <S> in the  domain  <T>,  or  in  the
##  second form, some domain indexed by the positive integer <i>. The precise
##  natures of the various methods are described elsewhere: for Lie algebras,
##  see~`LieFamily' ("LieFamily"); for group  products,  see~"Embeddings  and
##  Projections for  Group  Products"  for  a  general  description,  or  for
##  examples see~"Direct Products" for direct products, "Semidirect Products"
##  for semidirect products, or~"Wreath Products" for wreath products; or for
##  magma rings see~"Natural Embeddings related to Magma Rings".
##
DeclareOperation( "Embedding", [ IsDomain, IsObject ] );


#############################################################################
##
#O  Projection( <S>, <T> )  . . . . . . projection of one domain onto another
#O  Projection( <S>, <i> )
#O  Projection( <S> )
##
##  returns the projection of the domain <S> onto the domain <T>, or  in  the
##  second form, some domain indexed by the positive integer <i>, or  in  the
##  third form some natural subdomain of <S>. Various methods are defined for
##  group products; see~"Embeddings and Projections for Group Products" for a
##  general description, or for examples  see~"Direct  Products"  for  direct
##  products,  "Semidirect  Products"  for  semidirect  products,  "Subdirect
##  Products"  for  subdirect  products,  or~"Wreath  Products"  for   wreath
##  products.
##
DeclareOperation( "Projection", [ IsDomain, IsObject ] );


#############################################################################
##
#F  GeneralMappingByElements( <S>, <R>, <elms> )
##
##  is the general mapping with source <S> and range <R>,
##  and with underlying relation consisting of the tuples collection <elms>.
##
DeclareGlobalFunction( "GeneralMappingByElements" );


#############################################################################
##                                         
#F  MappingByFunction( <S>, <R>, <fun> )  . . . . .  create map from function
#F  MappingByFunction( <S>, <R>, <fun>, <invfun> )
#F  MappingByFunction( <S>, <R>, <fun>, `false',<prefun> )
##
##  `MappingByFunction' returns a mapping <map> with source <S> and range
##  <R>, such that each element <s> of <S> is mapped to the element
##  `<fun>( <s> )', where <fun> is a {\GAP} function.
##
##  If the argument <invfun> is bound then <map> is a bijection between <S>
##  and <R>, and the preimage of each element <r> of <R> is given by
##  `<invfun>( <r> )', where <invfun> is a {\GAP}  function.
##
##  In the third variant, a function <prefun> is given that can be used to
##  compute a single preimage. In this case, the third entry must be
##  `false'.
##
##  `MappingByFunction' creates a mapping which `IsNonSPGeneralMapping'
##              
DeclareGlobalFunction( "MappingByFunction" );


#############################################################################
##
#m  IsBijective . . . . . . . . . . . . . . . . . . . .  for identity mapping
##
InstallTrueMethod( IsBijective, IsGeneralMapping and IsOne );


#############################################################################
##
#m  IsSingleValued  . . . . . . . . . . . . . . . . . . . .  for zero mapping
#m  IsTotal . . . . . . . . . . . . . . . . . . . . . . . .  for zero mapping
##
InstallTrueMethod( IsSingleValued, IsGeneralMapping and IsZero );
InstallTrueMethod( IsTotal, IsGeneralMapping and IsZero );


#############################################################################
##
#F  CopyMappingAttributes( <from>, <to> )
##
##  Let <from> and <to> be two general mappings which are known to be equal.
##  `CopyMappingAttributes' copies known mapping attributes from <from> to
##  <to>. This is used in operations, such as
##  `AsGroupGeneralMappingByImages', that produce equal mappings in another
##  representation.
##
DeclareGlobalFunction( "CopyMappingAttributes" );

#############################################################################
##
#A  MappingGeneratorsImages(<map>)
##
##  This attribute contains a list of length 2, the first enry being a list
##  of generators of the source of <map> and the second entry a list of
##  their images. This attribute is used (for example) by
##  `GroupHomomorphismByImages' to store generators and images.
#T  `MappingGeneratorsImages' is permitted to call `Source' and
#T  `ImagesRepresentative'.
DeclareAttribute( "MappingGeneratorsImages", IsGeneralMapping );


#############################################################################
##
#E