1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
#############################################################################
##
#W basic.gd GAP Library Frank Celler
##
#H @(#)$Id: basic.gd,v 4.28 2000/02/01 13:34:11 gap Exp $
##
#Y Copyright (C) 1996, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
##
## This file contains the operations for the construction of the basic group
## types.
##
Revision.basic_gd :=
"@(#)$Id: basic.gd,v 4.28 2000/02/01 13:34:11 gap Exp $";
#############################################################################
##
#1
## There are several infinite families of groups which are parametrized by
## numbers.
## {\GAP} provides various functions to construct these groups.
## The functions always permit (but do not require) one to indicate
## a filter (see~"Filters"), for example `IsPermGroup', `IsMatrixGroup' or
## `IsPcGroup', in which the group shall be constructed.
## There always is a default filter corresponding to a ``natural'' way
## to describe the group in question.
## Note that not every group can be constructed in every filter,
## there may be theoretical restrictions (`IsPcGroup' only works for
## solvable groups) or methods may be available only for a few filters.
##
## Certain filters may admit additional hints.
## For example, groups constructed in `IsMatrixGroup' may be constructed
## over a specified field, which can be given as second argument of the
## function that constructs the group;
## The default field is `Rationals'.
#############################################################################
##
#O TrivialGroupCons( <filter> )
##
DeclareConstructor( "TrivialGroupCons", [ IsGroup ] );
#############################################################################
##
#F TrivialGroup( [<filter>] ) . . . . . . . . . . . . . . . . trivial group
##
## constructs a trivial group in the category given by the filter <filter>.
## If <filter> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "TrivialGroup", function( arg )
if Length( arg ) = 0 then
return TrivialGroupCons( IsPcGroup );
elif IsFilter( arg[1] ) and Length( arg ) = 1 then
return TrivialGroupCons( arg[1] );
fi;
Error( "usage: TrivialGroup( [<filter>] )" );
end );
#############################################################################
##
#O AbelianGroupCons( <filter>, <ints> )
##
DeclareConstructor( "AbelianGroupCons", [ IsGroup, IsList ] );
#############################################################################
##
#F AbelianGroup( [<filt>, ]<ints> ) . . . . . . . . . . . . . abelian group
##
## constructs an abelian group in the category given by the filter <filt>
## which is of isomorphism type $C_{ints[1]} \* C_{ints[2]} \* \ldots \*
## C_{ints[n]}$. <ints> must be a list of positive integers. If <filt> is
## not given it defaults to `IsPcGroup'. The generators of the group
## returned are the elements corresponding to the integers in <ints>.
##
BindGlobal( "AbelianGroup", function ( arg )
if Length(arg) = 1 then
return AbelianGroupCons( IsPcGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return AbelianGroupCons( arg[1], arg[2] );
elif Length(arg) = 3 then
return AbelianGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: AbelianGroup( [<filter>, ]<ints> )" );
end );
#############################################################################
##
#O AlternatingGroupCons( <filter>, <deg> )
##
DeclareConstructor( "AlternatingGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F AlternatingGroup( [<filt>, ]<deg> ) . . . . . . . . . . alternating group
#F AlternatingGroup( [<filt>, ]<dom> ) . . . . . . . . . . alternating group
##
## constructs the alternating group of degree <deg> in the category given
## by the filter <filt>.
## If <filt> is not given it defaults to `IsPermGroup'.
## In the second version, the function constructs the alternating group on
## the points given in the set <dom> which must be a set of positive
## integers.
##
BindGlobal( "AlternatingGroup", function ( arg )
if Length(arg) = 1 then
return AlternatingGroupCons( IsPermGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return AlternatingGroupCons( arg[1], arg[2] );
fi;
fi;
Error( "usage: AlternatingGroup( [<filter>, ]<deg> )" );
end );
#############################################################################
##
#O CyclicGroupCons( <filter>, <n> )
##
DeclareConstructor( "CyclicGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F CyclicGroup( [<filt>, ]<n> ) . . . . . . . . . . . . . . . cyclic group
##
## constructs the cyclic group of size <n> in the category given by the
## filter <filt>. If <filt> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "CyclicGroup", function ( arg )
if Length(arg) = 1 then
return CyclicGroupCons( IsPcGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return CyclicGroupCons( arg[1], arg[2] );
elif Length(arg) = 3 then
return CyclicGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: CyclicGroup( [<filter>, ]<size> )" );
end );
#############################################################################
##
#O DihedralGroupCons( <filter>, <n> )
##
DeclareConstructor( "DihedralGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F DihedralGroup( [<filt>, ]<n> ) . . . . . . . dihedral group of order <n>
##
## constructs the dihedral group of size <n> in the category given by the
## filter <filt>. If <filt> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "DihedralGroup", function ( arg )
if Length(arg) = 1 then
return DihedralGroupCons( IsPcGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return DihedralGroupCons( arg[1], arg[2] );
elif Length(arg) = 3 then
return DihedralGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: DihedralGroup( [<filter>, ]<size> )" );
end );
#############################################################################
##
#O ElementaryAbelianGroupCons( <filter>, <n> )
##
DeclareConstructor( "ElementaryAbelianGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F ElementaryAbelianGroup( [<filt>, ]<n> ) . . . . elementary abelian group
##
## constructs the elementary abelian group of size <n> in the category
## given by the filter <filt>.
## If <filt> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "ElementaryAbelianGroup", function ( arg )
if Length(arg) = 1 then
return ElementaryAbelianGroupCons( IsPcGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return ElementaryAbelianGroupCons( arg[1], arg[2] );
elif Length(arg) = 3 then
return ElementaryAbelianGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: ElementaryAbelianGroup( [<filter>, ]<size> )" );
end );
#############################################################################
##
#O ExtraspecialGroupCons( <filter>, <order>, <exponent> )
##
DeclareConstructor( "ExtraspecialGroupCons", [ IsGroup, IsInt, IsObject ] );
#############################################################################
##
#F ExtraspecialGroup( [<filt>, ]<order>, <exp> ) . . . . extraspecial group
##
## Let <order> be of the form $p^{2n+1}$, for a prime integer $p$ and a
## positive integer $n$.
## `ExtraspecialGroup' returns the extraspecial group of order <order>
## that is determined by <exp>, in the category given by the filter <filt>.
##
## If $p$ is odd then admissible values of <exp> are the exponent of the
## group (either $p$ or $p^2$) or one of `{'}+{'}', `\"+\"', `{'}-{'}',
## `\"-\"'.
## For $p = 2$, only the above plus or minus signs are admissible.
##
## If <filt> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "ExtraspecialGroup", function ( arg )
if Length(arg) = 2 then
return ExtraspecialGroupCons( IsPcGroup, arg[1], arg[2] );
elif IsOperation(arg[1]) then
if Length(arg) = 3 then
return ExtraspecialGroupCons( arg[1], arg[2], arg[3] );
elif Length(arg) = 4 then
return ExtraspecialGroupCons( arg[1], arg[2], arg[3], arg[4] );
fi;
fi;
Error( "usage: ExtraspecialGroup( [<filter>, ]<order>, <exponent> )" );
end );
#############################################################################
##
#O MathieuGroupCons( <filter>, <degree> )
##
DeclareConstructor( "MathieuGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F MathieuGroup( [<filt>, ]<degree> ) . . . . . . . . . . . . Mathieu group
##
## constructs the Mathieu group of degree <degree> in the category given by
## the filter <filt>,
## where <degree> must be in $\{ 9, 10, 11, 12, 21, 22, 23, 24 \}$.
## If <filt> is not given it defaults to `IsPermGroup'.
##
BindGlobal( "MathieuGroup", function( arg )
if Length( arg ) = 1 then
return MathieuGroupCons( IsPermGroup, arg[1] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 2 then
return MathieuGroupCons( arg[1], arg[2] );
elif Length( arg ) = 3 then
return MathieuGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: MathieuGroup( [<filter>, ]<degree> )" );
end );
#############################################################################
##
#O SymmetricGroupCons( <filter>, <deg> )
##
DeclareConstructor( "SymmetricGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F SymmetricGroup( [<filt>, ]<deg> )
#F SymmetricGroup( [<filt>, ]<dom> )
##
## constructs the symmetric group of degree <deg> in the category given by
## the filter <filt>.
## If <filt> is not given it defaults to `IsPermGroup'.
## In the second version, the function constructs the symmetric group on
## the points given in the set <dom> which must be a set of positive
## integers.
##
BindGlobal( "SymmetricGroup", function ( arg )
if Length(arg) = 1 then
return SymmetricGroupCons( IsPermGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return SymmetricGroupCons( arg[1], arg[2] );
fi;
fi;
Error( "usage: SymmetricGroup( [<filter>, ]<deg> )" );
end );
#############################################################################
##
#E
|