File: basic.gd

package info (click to toggle)
gap 4r4p9-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,120 kB
  • ctags: 6,735
  • sloc: ansic: 96,692; sh: 3,254; makefile: 319; perl: 11; awk: 6
file content (342 lines) | stat: -rw-r--r-- 10,726 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#############################################################################
##
#W  basic.gd                    GAP Library                      Frank Celler
##
#H  @(#)$Id: basic.gd,v 4.28 2000/02/01 13:34:11 gap Exp $
##
#Y  Copyright (C)  1996,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the operations for the construction of the basic group
##  types.
##
Revision.basic_gd :=
    "@(#)$Id: basic.gd,v 4.28 2000/02/01 13:34:11 gap Exp $";


#############################################################################
##
#1
##  There are several infinite families of groups which are parametrized by
##  numbers.
##  {\GAP} provides various functions to construct these groups.
##  The functions always permit (but do not require) one to indicate
##  a filter (see~"Filters"), for example `IsPermGroup', `IsMatrixGroup' or
##  `IsPcGroup', in which the group shall be constructed.
##  There always is a default filter corresponding to a ``natural'' way
##  to describe the group in question.
##  Note that not every group can be constructed in every filter,
##  there may be theoretical restrictions (`IsPcGroup' only works for
##  solvable groups) or methods may be available only for a few filters.
##
##  Certain filters may admit additional hints.
##  For example, groups constructed in `IsMatrixGroup' may be constructed
##  over a specified field, which can be given as second argument of the
##  function that constructs the group;
##  The default field is `Rationals'.


#############################################################################
##
#O  TrivialGroupCons( <filter> )
##
DeclareConstructor( "TrivialGroupCons", [ IsGroup ] );


#############################################################################
##
#F  TrivialGroup( [<filter>] )  . . . . . . . . . . . . . . . . trivial group
##
##  constructs a trivial group in the category given by the filter <filter>.
##  If <filter> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "TrivialGroup", function( arg )

  if Length( arg ) = 0 then
    return TrivialGroupCons( IsPcGroup );
  elif IsFilter( arg[1] ) and Length( arg ) = 1 then
    return TrivialGroupCons( arg[1] );
  fi;
  Error( "usage: TrivialGroup( [<filter>] )" );

end );


#############################################################################
##
#O  AbelianGroupCons( <filter>, <ints> )
##
DeclareConstructor( "AbelianGroupCons", [ IsGroup, IsList ] );


#############################################################################
##
#F  AbelianGroup( [<filt>, ]<ints> )  . . . . . . . . . . . . . abelian group
##
##  constructs an abelian group in the category given by the filter <filt>
##  which is of isomorphism type $C_{ints[1]} \*  C_{ints[2]} \* \ldots \*
##  C_{ints[n]}$.  <ints> must be a list of positive integers.  If <filt> is
##  not given it defaults to `IsPcGroup'.  The generators of the group
##  returned are the elements corresponding to the integers in <ints>.
##
BindGlobal( "AbelianGroup", function ( arg )

  if Length(arg) = 1  then
    return AbelianGroupCons( IsPcGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return AbelianGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return AbelianGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: AbelianGroup( [<filter>, ]<ints> )" );

end );


#############################################################################
##
#O  AlternatingGroupCons( <filter>, <deg> )
##
DeclareConstructor( "AlternatingGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  AlternatingGroup( [<filt>, ]<deg> ) . . . . . . . . . . alternating group
#F  AlternatingGroup( [<filt>, ]<dom> ) . . . . . . . . . . alternating group
##
##  constructs the alternating group of degree <deg> in the category given
##  by the filter <filt>.
##  If <filt> is not given it defaults to `IsPermGroup'.
##  In the second version, the function constructs the alternating group on
##  the points given in the set <dom> which must be a set of positive
##  integers.
##
BindGlobal( "AlternatingGroup", function ( arg )

  if Length(arg) = 1  then
    return  AlternatingGroupCons( IsPermGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return  AlternatingGroupCons( arg[1], arg[2] );
    fi;
  fi;
  Error( "usage:  AlternatingGroup( [<filter>, ]<deg> )" );

end );


#############################################################################
##
#O  CyclicGroupCons( <filter>, <n> )
##
DeclareConstructor( "CyclicGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  CyclicGroup( [<filt>, ]<n> )  . . . . . . . . . . . . . . .  cyclic group
##
##  constructs the cyclic group of size <n> in the category given by the
##  filter <filt>.  If <filt> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "CyclicGroup", function ( arg )

  if Length(arg) = 1  then
    return CyclicGroupCons( IsPcGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return CyclicGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return CyclicGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: CyclicGroup( [<filter>, ]<size> )" );

end );


#############################################################################
##
#O  DihedralGroupCons( <filter>, <n> )
##
DeclareConstructor( "DihedralGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  DihedralGroup( [<filt>, ]<n> )  . . . . . . . dihedral group of order <n>
##
##  constructs the dihedral group of size <n> in the category given by the
##  filter <filt>.  If <filt> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "DihedralGroup", function ( arg )

  if Length(arg) = 1  then
    return DihedralGroupCons( IsPcGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return DihedralGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return DihedralGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: DihedralGroup( [<filter>, ]<size> )" );

end );


#############################################################################
##
#O  ElementaryAbelianGroupCons( <filter>, <n> )
##
DeclareConstructor( "ElementaryAbelianGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  ElementaryAbelianGroup( [<filt>, ]<n> ) . . . .  elementary abelian group
##
##  constructs the elementary abelian group of size <n> in the category
##  given by the filter <filt>.
##  If <filt> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "ElementaryAbelianGroup", function ( arg )

  if Length(arg) = 1  then
    return ElementaryAbelianGroupCons( IsPcGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return ElementaryAbelianGroupCons( arg[1], arg[2] );

    elif Length(arg) = 3  then
      return ElementaryAbelianGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: ElementaryAbelianGroup( [<filter>, ]<size> )" );

end );


#############################################################################
##
#O  ExtraspecialGroupCons( <filter>, <order>, <exponent> )
##
DeclareConstructor( "ExtraspecialGroupCons", [ IsGroup, IsInt, IsObject ] );


#############################################################################
##
#F  ExtraspecialGroup( [<filt>, ]<order>, <exp> ) . . . .  extraspecial group
##
##  Let <order> be of the form $p^{2n+1}$, for a prime integer $p$ and a
##  positive integer $n$.
##  `ExtraspecialGroup' returns the extraspecial group of order <order>
##  that is determined by <exp>, in the category given by the filter <filt>.
##
##  If $p$ is odd then admissible values of <exp> are the exponent of the
##  group (either $p$ or $p^2$) or one of `{'}+{'}', `\"+\"', `{'}-{'}',
##  `\"-\"'.
##  For $p = 2$, only the above plus or minus signs are admissible.
##
##  If <filt> is not given it defaults to `IsPcGroup'.
##
BindGlobal( "ExtraspecialGroup", function ( arg )

  if Length(arg) = 2  then
    return ExtraspecialGroupCons( IsPcGroup, arg[1], arg[2] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 3  then
      return ExtraspecialGroupCons( arg[1], arg[2], arg[3] );

    elif Length(arg) = 4  then
      return ExtraspecialGroupCons( arg[1], arg[2], arg[3], arg[4] );
    fi;
  fi;
  Error( "usage: ExtraspecialGroup( [<filter>, ]<order>, <exponent> )" );

end );


#############################################################################
##
#O  MathieuGroupCons( <filter>, <degree> )
##
DeclareConstructor( "MathieuGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  MathieuGroup( [<filt>, ]<degree> )  . . . . . . . . . . . . Mathieu group
##
##  constructs the Mathieu group of degree <degree> in the category given by
##  the filter <filt>,
##  where <degree> must be in $\{ 9, 10, 11, 12, 21, 22, 23, 24 \}$.
##  If <filt> is not given it defaults to `IsPermGroup'.
##
BindGlobal( "MathieuGroup", function( arg )

  if Length( arg ) = 1 then
    return MathieuGroupCons( IsPermGroup, arg[1] );
  elif IsOperation( arg[1] ) then

    if Length( arg ) = 2 then
      return MathieuGroupCons( arg[1], arg[2] );

    elif Length( arg ) = 3 then
      return MathieuGroupCons( arg[1], arg[2], arg[3] );
    fi;
  fi;
  Error( "usage: MathieuGroup( [<filter>, ]<degree> )" );

end );


#############################################################################
##
#O  SymmetricGroupCons( <filter>, <deg> )
##
DeclareConstructor( "SymmetricGroupCons", [ IsGroup, IsInt ] );


#############################################################################
##
#F  SymmetricGroup( [<filt>, ]<deg> )
#F  SymmetricGroup( [<filt>, ]<dom> )
##
##  constructs the symmetric group of degree <deg> in the category given by
##  the filter <filt>.
##  If <filt> is not given it defaults to `IsPermGroup'.
##  In the second version, the function constructs the symmetric group on
##  the points given in the set <dom> which must be a set of positive
##  integers.
##
BindGlobal( "SymmetricGroup", function ( arg )

  if Length(arg) = 1  then
    return  SymmetricGroupCons( IsPermGroup, arg[1] );
  elif IsOperation(arg[1]) then

    if Length(arg) = 2  then
      return  SymmetricGroupCons( arg[1], arg[2] );
    fi;
  fi;
  Error( "usage:  SymmetricGroup( [<filter>, ]<deg> )" );

end );


#############################################################################
##
#E