1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
|
#############################################################################
##
#W algebra.gd GAP library Thomas Breuer
##
#H @(#)$Id: algebra.gd,v 4.76.2.2 2006/03/28 16:34:44 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for `FLMLOR's and algebras.
##
Revision.algebra_gd :=
"@(#)$Id: algebra.gd,v 4.76.2.2 2006/03/28 16:34:44 gap Exp $";
#1
## An algebra is a vector space equipped with a bilinear map (multiplication).
## This chapter describes the functions in {\GAP} that deal with
## general algebras and associative algebras.
##
## Algebras in {\GAP} are vector spaces in a natural way. So all the
## functionality for vector spaces (see Chapter "ref:vector spaces") is also
## applicable to algebras.
##
#############################################################################
##
#V InfoAlgebra
##
## is the info class for the functions dealing with algebras
## (see~"Info Functions").
##
DeclareInfoClass( "InfoAlgebra" );
#############################################################################
##
#C IsFLMLOR( <obj> )
##
## A FLMLOR (``free left module left operator ring'') in {\GAP} is a ring
## that is also a free left module.
##
## Note that this means that being a FLMLOR is not a property a
## ring can get,
## since a ring is usually not represented as an external left set.
##
## Examples are magma rings (e.g. over the integers) or algebras.
##
DeclareSynonym( "IsFLMLOR", IsFreeLeftModule and IsLeftOperatorRing );
#############################################################################
##
#C IsFLMLORWithOne( <obj> )
##
## A FLMLOR-with-one in {\GAP} is a ring-with-one that is also a free left
## module.
##
## Note that this means that being a FLMLOR-with-one is not a property a
## ring-with-one can get,
## since a ring-with-one is usually not represented as an external left set.
##
## Examples are magma rings-with-one or algebras-with-one (but also over the
## integers).
##
DeclareSynonym( "IsFLMLORWithOne",
IsFreeLeftModule and IsLeftOperatorRingWithOne );
#############################################################################
##
#C IsAlgebra( <obj> )
##
## An algebra in {\GAP} is a ring that is also a left vector space.
## Note that this means that being an algebra is not a property a ring can
## get, since a ring is usually not represented as an external left set.
##
DeclareSynonym( "IsAlgebra", IsLeftVectorSpace and IsLeftOperatorRing );
#############################################################################
##
#C IsAlgebraWithOne( <obj> )
##
## An algebra-with-one in {\GAP} is a ring-with-one that is also
## a left vector space.
## Note that this means that being an algebra-with-one is not a property a
## ring-with-one can get,
## since a ring-with-one is usually not represented as an external left set.
##
DeclareSynonym( "IsAlgebraWithOne",
IsLeftVectorSpace and IsLeftOperatorRingWithOne );
#############################################################################
##
#P IsLieAlgebra( <A> )
##
## An algebra <A> is called Lie algebra if $a * a = 0$ for all $a$ in <A>
## and $( a * ( b * c ) ) + ( b * ( c * a ) ) + ( c * ( a * b ) ) = 0$
## for all $a, b, c$ in <A> (Jacobi identity).
##
DeclareSynonymAttr( "IsLieAlgebra",
IsAlgebra and IsZeroSquaredRing and IsJacobianRing );
#############################################################################
##
#P IsSimpleAlgebra( <A> )
##
## is `true' if the algebra <A> is simple, and `false' otherwise. This
## function is only implemented for the cases where <A> is an associative or
## a Lie algebra. And for Lie algebras it is only implemented for the
## case where the ground field is of characteristic $0$.
##
DeclareProperty( "IsSimpleAlgebra", IsAlgebra );
#############################################################################
##
#A GeneratorsOfLeftOperatorRing
##
DeclareAttribute( "GeneratorsOfLeftOperatorRing", IsLeftOperatorRing );
#############################################################################
##
#A GeneratorsOfLeftOperatorRingWithOne
##
DeclareAttribute( "GeneratorsOfLeftOperatorRingWithOne",
IsLeftOperatorRingWithOne );
#############################################################################
##
#A GeneratorsOfAlgebra( <A> )
##
## returns a list of elements that generate <A> as an algebra.
##
DeclareSynonymAttr( "GeneratorsOfAlgebra", GeneratorsOfLeftOperatorRing );
DeclareSynonymAttr( "GeneratorsOfFLMLOR", GeneratorsOfLeftOperatorRing );
#############################################################################
##
#A GeneratorsOfAlgebraWithOne( <A> )
##
## returns a list of elements of <A> that generate <A> as an algebra with
## one.
##
DeclareSynonymAttr( "GeneratorsOfAlgebraWithOne",
GeneratorsOfLeftOperatorRingWithOne );
DeclareSynonymAttr( "GeneratorsOfFLMLORWithOne",
GeneratorsOfLeftOperatorRingWithOne );
#############################################################################
##
#A PowerSubalgebraSeries( <A> )
##
## returns a list of subalgebras of <A>, the first term of which is <A>;
## and every next term is the product space of the previous term with itself.
##
DeclareAttribute( "PowerSubalgebraSeries", IsAlgebra );
#############################################################################
##
#A AdjointBasis( <B> )
##
## Let $x$ be an element of an algebra $A$. Then the adjoint map
## of $x$ is the left multiplication by $x$. It is a linear map of $A$.
## For the basis <B> of an algebra $A$, this function returns a
## particular basis $C$ of the matrix space generated by $ad A$,
## (the matrix spaces spanned by the matrices of the left multiplication);
## namely a basis consisting of elements of the form $ad x_i$,
## where $x_i$ is a basis element of <B>.
##
DeclareAttribute( "AdjointBasis", IsBasis );
#############################################################################
##
#A IndicesOfAdjointBasis( <B> )
##
## Let <A> be an algebra and let <B>
## be the basis that is output by `AdjointBasis( Basis( <A> ) )'.
## This function
## returns a list of indices. If $i$ is an index belonging to this
## list, then $ad x_{i}$ is a basis vector of the matrix space spanned
## by $ad A$, where $x_{i}$ is the $i$-th basis vector of the basis <B>.
##
DeclareAttribute( "IndicesOfAdjointBasis", IsBasis );
#############################################################################
##
#A RadicalOfAlgebra( <A> )
##
## is the maximal nilpotent ideal of <A>, where <A> is an associative
## algebra.
##
DeclareAttribute( "RadicalOfAlgebra", IsAlgebra );
#############################################################################
##
#A DirectSumDecomposition( <L> )
##
## This function calculates a list of ideals of the algebra <L> such
## that <L> is equal to their direct sum. Currently this is only implemented
## for semisimple associative algebras, and Lie algebras (semisimple or not).
##
DeclareAttribute( "DirectSumDecomposition", IsAlgebra );
#############################################################################
##
#A TrivialSubalgebra( <A> )
##
## The zero dimensional subalgebra of the algebra <A>.
##
DeclareSynonymAttr( "TrivialSubFLMLOR", TrivialSubadditiveMagmaWithZero );
DeclareSynonymAttr( "TrivialSubalgebra", TrivialSubFLMLOR );
#############################################################################
##
#A NullAlgebra( <R> ) . . . . . . . . . . zero dimensional algebra over <R>
##
## The zero-dimensional algebra over <R>.
#T or store this in the family ?
##
DeclareAttribute( "NullAlgebra", IsRing );
#############################################################################
##
#O ProductSpace( <U>, <V> )
##
## is the vector space $\langle u * v ; u \in U, v \in V \rangle$,
## where $U$ and $V$ are subspaces of the same algebra.
##
## If $<U> = <V>$ is known to be an algebra then the product space is also
## an algebra, moreover it is an ideal in <U>.
## If <U> and <V> are known to be ideals in an algebra $A$
## then the product space is known to be an algebra and an ideal in $A$.
##
DeclareOperation( "ProductSpace", [ IsFreeLeftModule, IsFreeLeftModule ] );
#############################################################################
##
#O DirectSumOfAlgebras( <A1>, <A2> )
#O DirectSumOfAlgebras( <list> )
##
## is the direct sum of the two algebras <A1> and <A2> respectively of the
## algebras in the list <list>.
##
## If all involved algebras are associative algebras then the result is also
## known to be associative.
## If all involved algebras are Lie algebras then the result is also known
## to be a Lie algebra.
##
## All involved algebras must have the same left acting domain.
##
## The default case is that the result is a structure constants algebra.
## If all involved algebras are matrix algebras, and either both are Lie
## algebras or both are associative then the result is again a
## matrix algebra of the appropriate type.
##
DeclareOperation( "DirectSumOfAlgebras", [ IsDenseList ] );
#############################################################################
##
#F FullMatrixAlgebraCentralizer( <F>, <lst> )
##
## Compute the centralizer of the list of matrices in the list <lst> in the
## full matrix algebra over the ring <F>.
##
DeclareGlobalFunction( "FullMatrixAlgebraCentralizer" );
#############################################################################
##
#O AsAlgebra( <F>, <A> ) . . . . . . . . . . . view <A> as algebra over <F>
##
## Returns the algebra over <F> generated by <A>.
##
DeclareOperation( "AsFLMLOR", [ IsRing, IsCollection ] );
DeclareSynonym( "AsAlgebra", AsFLMLOR );
#############################################################################
##
#O AsAlgebraWithOne( <F>, <A> ) . . . view <A> as algebra-with-one over <F>
##
## If the algebra <A> has an identity, then it can be viewed as an
## algebra with one over <F>. This function returns this algebra with one.
##
DeclareOperation( "AsFLMLORWithOne", [ IsRing, IsCollection ] );
DeclareSynonym( "AsAlgebraWithOne", AsFLMLORWithOne );
#############################################################################
##
#O AsSubalgebra( <A>, <B> ) . . . . . . . . . view <B> as subalgebra of <A>
##
## If all elements of the algebra <B> happen to be contained in the
## algebra <A>, then <B> can be viewed as a subalgebra of <A>. This
## function returns this subalgebra.
##
DeclareOperation( "AsSubFLMLOR", [ IsFLMLOR, IsFLMLOR ] );
DeclareSynonym( "AsSubalgebra", AsSubFLMLOR );
#############################################################################
##
#O AsSubalgebraWithOne( <A>, <B> ) . . view <B> as subalgebra-wth-one of <A>
##
## If <B> is an algebra with one, all elements of which happen to be
## contained in the algebra with one <A>, then <B> can be viewed as a
## subalgebra with one of <A>. This function returns this subalgebra
## with one.
##
DeclareOperation( "AsSubFLMLORWithOne", [ IsFLMLOR, IsFLMLOR ] );
DeclareSynonym( "AsSubalgebraWithOne", AsSubFLMLORWithOne );
#2
## For an introduction into structure constants and how they are handled
## by {\GAP}, we refer to Section "tut:Algebras" of the user's tutorial.
#############################################################################
##
#F EmptySCTable( <dim>, <zero> )
#F EmptySCTable( <dim>, <zero>, \"symmetric\" )
#F EmptySCTable( <dim>, <zero>, \"antisymmetric\" )
##
## `EmptySCTable' returns a structure constants table for an algebra of
## dimension <dim>, describing trivial multiplication.
## <zero> must be the zero of the coefficients domain.
## If the multiplication is known to be (anti)commutative then
## this can be indicated by the optional third argument.
##
## For filling up the structure constants table, see "SetEntrySCTable".
##
DeclareGlobalFunction( "EmptySCTable" );
#############################################################################
##
#F SetEntrySCTable( <T>, <i>, <j>, <list> )
##
## sets the entry of the structure constants table <T> that describes the
## product of the <i>-th basis element with the <j>-th basis element to the
## value given by the list <list>.
##
## If <T> is known to be antisymmetric or symmetric then also the value
## `<T>[<j>][<i>]' is set.
##
## <list> must be of the form
## $[ c_{ij}^{k_1}, k_1, c_{ij}^{k_2}, k_2, \ldots ]$.
##
## The entries at the odd positions of <list> must be compatible with the
## zero element stored in <T>.
## For convenience, these entries may also be rational numbers that are
## automatically replaced by the corresponding elements in the appropriate
## prime field in finite characteristic if necessary.
##
DeclareGlobalFunction( "SetEntrySCTable" );
#############################################################################
##
#F ReducedSCTable( <T>, <one> )
##
## returns an immutable structure constants table obtained by reducing the
## (rational) coefficients of the structure constants table <T> by
## multiplication with <one>.
##
DeclareGlobalFunction( "ReducedSCTable" );
#############################################################################
##
#F GapInputSCTable( <T>, <varname> )
##
## is a string that describes the structure constants table <T> in terms of
## `EmptySCTable' and `SetEntrySCTable'.
## The assignments are made to the variable <varname>.
##
DeclareGlobalFunction( "GapInputSCTable" );
#############################################################################
##
#F IdentityFromSCTable( <T> )
##
## Let <T> be a structure constants table of an algebra $A$ of dimension $n$.
## `IdentityFromSCTable( <T> )' is either `fail' or the vector of length
## $n$ that contains the coefficients of the multiplicative identity of $A$
## with respect to the basis that belongs to <T>.
##
DeclareGlobalFunction( "IdentityFromSCTable" );
#############################################################################
##
#F QuotientFromSCTable( <T>, <num>, <den> )
##
## Let <T> be a structure constants table of an algebra $A$ of dimension $n$.
## `QuotientFromSCTable( <T> )' is either `fail' or the vector of length
## $n$ that contains the coefficients of the quotient of <num> and <den>
## with respect to the basis that belongs to <T>.
##
## We solve the equation system $<num> = x <den>$.
## If no solution exists, `fail' is returned.
##
## In terms of the basis $B$ with vectors $b_1, \ldots, b_n$ this means
## for $<num> = \sum_{i=1}^n a_i b_i$,
## $<den> = \sum_{i=1}^n c_i b_i$,
## $x = \sum_{i=1}^n x_i b_i$ that
## $a_k = \sum_{i,j} c_i x_j c_{ijk}$ for all $k$.
## Here $c_{ijk}$ denotes the structure constants with respect to $B$.
## This means that (as a vector) $a=xM$ with
## $M_{jk} = \sum_{i=1}^n c_{ijk} c_i$.
##
DeclareGlobalFunction( "QuotientFromSCTable" );
#############################################################################
##
#F TestJacobi( <T> )
##
## tests whether the structure constants table <T> satisfies the Jacobi
## identity
## $v_i*(v_j*v_k)+v_j*(v_k*v_i)+v_k*(v_i*v_j)=0$
## for all basis vectors $v_i$ of the underlying algebra,
## where $i \leq j \leq k$.
## (Thus antisymmetry is assumed.)
##
## The function returns `true' if the Jacobi identity is satisfied,
## and a failing triple `[ i, j, k ]' otherwise.
##
DeclareGlobalFunction( "TestJacobi" );
#############################################################################
##
#O ClosureLeftOperatorRing( <A>, <a> )
#O ClosureLeftOperatorRing( <A>, <S> )
##
## For a left operator ring <A> and either an element <a> of its elements
## family or a left operator ring <S> (over the same left acting domain),
## `ClosureLeftOperatorRing' returns the left operator ring generated by
## both arguments.
##
DeclareOperation( "ClosureLeftOperatorRing",
[ IsLeftOperatorRing, IsObject ] );
DeclareSynonym( "ClosureAlgebra", ClosureLeftOperatorRing );
#############################################################################
##
#F MutableBasisOfClosureUnderAction( <F>, <Agens>, <from>, <init>, <opr>,
#F <zero>, <maxdim> )
##
## Let <F> be a ring, <Agens> a list of generators for an <F>-algebra $A$,
## and <from> one of `"left"', `"right"', `"both"'; (this means that elements
## of $A$ act via multiplication from the respective side(s).)
## <init> must be a list of initial generating vectors,
## and <opr> the operation (a function of two arguments).
##
## `MutableBasisOfClosureUnderAction' returns a mutable basis of the
## <F>-free left module generated by the vectors in <init>
## and their images under the action of <Agens> from the respective side(s).
##
## <zero> is the zero element of the desired module.
## <maxdim> is an upper bound for the dimension of the closure; if no such
## upper bound is known then the value of <maxdim> must be `infinity'.
##
## `MutableBasisOfClosureUnderAction' can be used to compute a basis of an
## *associative* algebra generated by the elements in <Agens>. In this
## case <from> may be `"left"' or `"right"', <opr> is the multiplication `\*',
## and <init> is a list containing either the identity of the algebra or a
## list of algebra generators.
## (Note that if the algebra has an identity then it is in general not
## sufficient to take algebra-with-one generators as <init>,
## whereas of course <Agens> need not contain the identity.)
##
## (Note that bases of *not* necessarily associative algebras can be
## computed using `MutableBasisOfNonassociativeAlgebra'.)
##
## Other applications of `MutableBasisOfClosureUnderAction' are the
## computations of bases for (left/ right/ two-sided) ideals $I$ in an
## *associative* algebra $A$ from ideal generators of $I$;
## in these cases <Agens> is a list of algebra generators of $A$,
## <from> denotes the appropriate side(s),
## <init> is a list of ideal generators of $I$, and <opr> is again `\*'.
##
## (Note that bases of ideals in *not* necessarily associative algebras can
## be computed using `MutableBasisOfIdealInNonassociativeAlgebra'.)
##
## Finally, bases of right $A$-modules also can be computed using
## `MutableBasisOfClosureUnderAction'.
## The only difference to the ideal case is that <init> is now a list of
## right module generators, and <opr> is the operation of the module.
##
#T (Remark:
#T It would be possible to use vector space generators of the algebra $A$
#T if they are known; but in the associative case, it is cheaper to multiply
#T only with generators until the vector space becomes stable.)
##
DeclareGlobalFunction( "MutableBasisOfClosureUnderAction" );
#############################################################################
##
#F MutableBasisOfNonassociativeAlgebra( <F>, <Agens>, <zero>, <maxdim> )
##
## is a mutable basis of the (not necessarily associative) <F>-algebra that
## is generated by <Agens>, has zero element <zero>, and has dimension at
## most <maxdim>.
## If no finite bound for the dimension is known then `infinity' must be
## the value of <maxdim>.
##
## The difference to `MutableBasisOfClosureUnderAction' is that in general
## it is not sufficient to multiply just with algebra generators.
## (For special cases of nonassociative algebras, especially for Lie
## algebras, multiplying with algebra generators suffices.)
##
DeclareGlobalFunction( "MutableBasisOfNonassociativeAlgebra" );
#############################################################################
##
#F MutableBasisOfIdealInNonassociativeAlgebra( <F>, <Vgens>, <Igens>,
#F <zero>, <from>, <maxdim> )
##
## is a mutable basis of the ideal generated by <Igens> under the action of
## the (not necessarily associative) <F>-algebra with vector space
## generators <Vgens>.
## The zero element of the ideal is <zero>,
## <from> is one of `"left"', `"right"', `"both"' (with the same meaning as
## in `MutableBasisOfClosureUnderAction'),
## and <maxdim> is a known upper bound on the dimension of the ideal;
## if no finite bound for the dimension is known then `infinity' must be
## the value of <maxdim>.
##
## The difference to `MutableBasisOfClosureUnderAction' is that in general
## it is not sufficient to multiply just with algebra generators.
## (For special cases of nonassociative algebras, especially for Lie
## algebras, multiplying with algebra generators suffices.)
##
DeclareGlobalFunction( "MutableBasisOfIdealInNonassociativeAlgebra" );
#############################################################################
##
## Domain constructors
##
#############################################################################
##
#O AlgebraByGenerators(<F>,<gens>) . . . . . . . . <F>-algebra by generators
#O AlgebraByGenerators( <F>, <gens>, <zero> )
##
DeclareOperation( "FLMLORByGenerators",
[ IsRing, IsCollection ] );
DeclareSynonym( "AlgebraByGenerators", FLMLORByGenerators );
#############################################################################
##
#F Algebra( <F>, <gens> )
#F Algebra( <F>, <gens>, <zero> )
#F Algebra( <F>, <gens>, "basis" )
#F Algebra( <F>, <gens>, <zero>, "basis" )
##
## `Algebra( <F>, <gens> )' is the algebra over the division ring
## <F>, generated by the vectors in the list <gens>.
##
## If there are three arguments, a division ring <F> and a list <gens>
## and an element <zero>,
## then `Algebra( <F>, <gens>, <zero> )' is the <F>-algebra
## generated by <gens>, with zero element <zero>.
##
## If the last argument is the string `\"basis\"' then the vectors in
## <gens> are known to form a basis of the algebra (as an <F>-vector space).
##
DeclareGlobalFunction( "FLMLOR" );
DeclareSynonym( "Algebra", FLMLOR );
#############################################################################
##
#F Subalgebra( <A>, <gens> ) . . . . . subalgebra of <A> generated by <gens>
#F Subalgebra( <A>, <gens>, "basis" )
##
## is the $F$-algebra generated by <gens>, with parent algebra <A>, where
## $F$ is the left acting domain of <A>.
##
## *Note* that being a subalgebra of <A> means to be an algebra, to be
## contained in <A>, *and* to have the same left acting domain as <A>.
##
## An optional argument `\"basis\"' may be added if it is known that
## the generators already form a basis of the algebra.
## Then it is *not* checked whether <gens> really are linearly independent
## and whether all elements in <gens> lie in <A>.
##
DeclareGlobalFunction( "SubFLMLOR" );
DeclareSynonym( "Subalgebra", SubFLMLOR );
#############################################################################
##
#F SubalgebraNC( <A>, <gens> )
#F SubalgebraNC( <A>, <gens>, "basis" )
##
## `SubalgebraNC' constructs the subalgebra generated by <gens>, only it
## does not check whether all elements in <gens> lie in <A>.
##
DeclareGlobalFunction( "SubFLMLORNC" );
DeclareSynonym( "SubalgebraNC", SubFLMLORNC );
#############################################################################
##
#O AlgebraWithOneByGenerators(<F>,<gens>) . <F>-alg.-with-one by generators
#O AlgebraWithOneByGenerators( <F>, <gens>, <zero> )
##
DeclareOperation( "FLMLORWithOneByGenerators",
[ IsRing, IsCollection ] );
DeclareSynonym( "AlgebraWithOneByGenerators", FLMLORWithOneByGenerators );
#############################################################################
##
#F AlgebraWithOne( <F>, <gens> )
#F AlgebraWithOne( <F>, <gens>, <zero> )
#F AlgebraWithOne( <F>, <gens>, "basis" )
#F AlgebraWithOne( <F>, <gens>, <zero>, "basis" )
##
## `AlgebraWithOne( <F>, <gens> )' is the algebra-with-one over the division
## ring <F>, generated by the vectors in the list <gens>.
##
## If there are three arguments, a division ring <F> and a list <gens>
## and an element <zero>,
## then `AlgebraWithOne( <F>, <gens>, <zero> )' is the <F>-algebra-with-one
## generated by <gens>, with zero element <zero>.
##
## If the last argument is the string `\"basis\"' then the vectors in
## <gens> are known to form a basis of the algebra (as an <F>-vector space).
##
DeclareGlobalFunction( "FLMLORWithOne" );
DeclareSynonym( "AlgebraWithOne", FLMLORWithOne );
#############################################################################
##
#F SubalgebraWithOne( <A>, <gens> ) subalg.-with-one of <A> gen. by <gens>
#F SubalgebraWithOne( <A>, <gens>, "basis" )
##
## is the algebra-with-one generated by <gens>, with parent algebra <A>.
##
## The optional third argument `\"basis\"' may be added if it is
## known that the elements from <gens> are linearly independent.
## Then it is *not* checked whether <gens> really are linearly independent
## and whether all elements in <gens> lie in <A>.
##
DeclareGlobalFunction( "SubFLMLORWithOne" );
DeclareSynonym( "SubalgebraWithOne", SubFLMLORWithOne );
#############################################################################
##
#F SubalgebraWithOneNC( <A>, <gens> )
#F SubalgebraWithOneNC( <A>, <gens>, "basis" )
##
## `SubalgebraWithOneNC' does not check whether all elements in <gens> lie
## in <A>.
##
DeclareGlobalFunction( "SubFLMLORWithOneNC" );
DeclareSynonym( "SubalgebraWithOneNC", SubFLMLORWithOneNC );
#############################################################################
##
#F LieAlgebra( <L> )
#F LieAlgebra( <F>, <gens> )
#F LieAlgebra( <F>, <gens>, <zero> )
#F LieAlgebra( <F>, <gens>, "basis" )
#F LieAlgebra( <F>, <gens>, <zero>, "basis" )
##
## For an associative algebra <L>, `LieAlgebra( <L> )' is the Lie algebra
## isomorphic to <L> as a vector space but with the Lie bracket as product.
##
## `LieAlgebra( <F>, <gens> )' is the Lie algebra over the division ring
## <F>, generated *as Lie algebra* by the Lie objects corresponding to the
## vectors in the list <gens>.
##
## *Note* that the algebra returned by `LieAlgebra' does not contain the
## vectors in <gens>. The elements in <gens> are wrapped up as Lie objects
## (see "ref:lie objects").
## This allows one to create Lie algebras from ring elements with respect to
## the Lie bracket as product. But of course the product in the Lie
## algebra is the usual `\*'.
##
## If there are three arguments, a division ring <F> and a list <gens>
## and an element <zero>,
## then `LieAlgebra( <F>, <gens>, <zero> )' is the corresponding <F>-Lie
## algebra with zero element the Lie object corresponding to <zero>.
##
## If the last argument is the string `\"basis\"' then the vectors in
## <gens> are known to form a basis of the algebra (as an <F>-vector space).
##
## *Note* that even if each element in <gens> is already a Lie element,
## i.e., is of the form `LieElement( <elm> )' for an object <elm>,
## the elements of the result lie in the Lie family of the family that
## contains <gens> as a subset.
##
DeclareGlobalFunction( "LieAlgebra" );
#############################################################################
##
#A LieAlgebraByDomain( <A> )
##
## is a Lie algebra isomorphic to the algebra <A> as a vector space,
## but with the Lie bracket as product.
##
DeclareAttribute( "LieAlgebraByDomain", IsAlgebra );
#############################################################################
##
#O AsLieAlgebra( <F>, <A> ) . . . . . . . . view <A> as Lie algebra over <F>
##
## Note that the multiplication in <A> is the same as in the result.
##
DeclareOperation( "AsLieAlgebra", [ IsDivisionRing, IsCollection ] );
#############################################################################
##
#F FreeAlgebra( <R>, <rank> )
#F FreeAlgebra( <R>, <rank>, <name> )
#F FreeAlgebra( <R>, <name1>, <name2>, ... )
##
## is a free (nonassociative) algebra of rank <rank> over the ring <R>.
## Here <name>, and <name1>, <name2>,... are optional strings that can be used
## to provide names for the generators.
##
DeclareGlobalFunction( "FreeAlgebra" );
#############################################################################
##
#F FreeAlgebraWithOne( <R>, <rank> )
#F FreeAlgebraWithOne( <R>, <rank>, <name> )
#F FreeAlgebraWithOne( <R>, <name1>, <name2>, ... )
##
## is a free (nonassociative) algebra-with-one of rank <rank> over the ring
## <R>.
## Here <name>, and <name1>, <name2>,... are optional strings that can be used
## to provide names for the generators.
##
DeclareGlobalFunction( "FreeAlgebraWithOne" );
#############################################################################
##
#F FreeAssociativeAlgebra( <R>, <rank> )
#F FreeAssociativeAlgebra( <R>, <rank>, <name> )
#F FreeAssociativeAlgebra( <R>, <name1>, <name2>, ... )
##
## is a free associative algebra of rank <rank> over the ring <R>.
## Here <name>, and <name1>, <name2>,... are optional strings that can be used
## to provide names for the generators.
##
DeclareGlobalFunction( "FreeAssociativeAlgebra" );
#############################################################################
##
#F FreeAssociativeAlgebraWithOne( <R>, <rank> )
#F FreeAssociativeAlgebraWithOne( <R>, <rank>, <name> )
#F FreeAssociativeAlgebraWithOne( <R>, <name1>, <name2>, ... )
##
## is a free associative algebra-with-one of rank <rank> over the ring <R>.
## Here <name>, and <name1>, <name2>,... are optional strings that can be used
## to provide names for the generators.
##
DeclareGlobalFunction( "FreeAssociativeAlgebraWithOne" );
#############################################################################
##
#F AlgebraByStructureConstants( <R>, <sctable> )
#F AlgebraByStructureConstants( <R>, <sctable>, <name> )
#F AlgebraByStructureConstants( <R>, <sctable>, <names> )
#F AlgebraByStructureConstants( <R>, <sctable>, <name1>, <name2>, ... )
##
## returns a free left module $A$ over the ring <R>,
## with multiplication defined by the structure constants table <sctable>.
## Here <name> and <name1>, <name2>, `...' are optional strings
## that can be used to provide names for the elements of the canonical basis
## of $A$.
## <names> is a list of strings that can be entered instead of the specific
## names <name1>, <name2>, `...'.
## The vectors of the canonical basis of $A$ correspond to the vectors of
## the basis given by <sctable>.
##
#% The algebra generators of $A$ are linearly independent
#% abstract vector space generators
#% $x_1, x_2, \ldots, x_n$ which are multiplied according to the formula
#% $ x_i x_j = \sum_{k=1}^n c_{ijk} x_k$
#% where `$c_{ijk}$ = <sctable>[i][j][1][i_k]'
#% and `<sctable>[i][j][2][i_k] = k'.
##
## It is *not* checked whether the coefficients in <sctable> are really
## elements in <R>.
##
DeclareGlobalFunction( "AlgebraByStructureConstants" );
#############################################################################
##
#F LieAlgebraByStructureConstants( <R>, <sctable> )
#F LieAlgebraByStructureConstants( <R>, <sctable>, <name> )
#F LieAlgebraByStructureConstants( <R>, <sctable>, <name1>, <name2>, ... )
##
## `LieAlgebraByStructureConstants' does the same as
## `AlgebraByStructureConstants', except that the result is assumed to be
## a Lie algebra. Note that the function does not check whether
## <sctable> satisfies the Jacobi identity. (So if one creates a Lie
## algebra this way with a table that does not satisfy the Jacobi identity,
## errors may occur later on.)
##
DeclareGlobalFunction( "LieAlgebraByStructureConstants" );
#############################################################################
##
#C IsQuaternion( <obj> )
#C IsQuaternionCollection(<obj>)
#C IsQuaternionCollColl(<obj>)
##
## `IsQuaternion' is the category of elements in an algebra constructed by
## `QuaternionAlgebra'. A collection of quaternions lies in the category
## `IsQuaternionCollection'. Finally, a collection of quaternion collections
## (e.g., a matrix of quaternions) lies in the category
## `IsQuaternionCollColl'.
##
DeclareCategory( "IsQuaternion", IsScalar and IsAssociative );
DeclareCategoryCollections( "IsQuaternion" );
DeclareCategoryCollections( "IsQuaternionCollection" );
#############################################################################
##
#F QuaternionAlgebra( <F> )
#F QuaternionAlgebra( <F>, <a>, <b> )
##
## is a quaternion algebra over the field <F> with parameters <a> and <b> in
## <F>, i.e., a four-dimensional associative <F>-algebra with basis
## $(e,i,j,k)$ and multiplication defined by
## $e e = e$, $e i = i e = i$, $e j = j e = j$, $e k = k e = k$,
## $i i = <a> e$, $i j = - j i = k$, $i k = - k i = <a> j$,
## $j j = <b> e$, $j k = - k j = <b> i$,
## $k k = - <a> <b> e$.
## The default value for both <a> and <b> is $-1 \in <F>$.
##
## The `GeneratorsOfAlgebra' (see~"GeneratorsOfAlgebra") and
## `CanonicalBasis' (see~"CanonicalBasis") value of an algebra constructed
## with `QuaternionAlgebra' is the list $[ e, i, j, k ]$.
##
## The embedding of the field `GaussianRationals' into a quaternion algebra
## $A$ over `Rationals' is not uniquely determined.
## One can specify one as a vector space homomorphism that maps `1' to the
## first algebra generator of $A$, and `E(4)' to one of the others.
##
DeclareGlobalFunction( "QuaternionAlgebra" );
#############################################################################
##
#F ComplexificationQuat( <vector> )
#F ComplexificationQuat( <matrix> )
##
## Let $A = e F \oplus i F \oplus j F \oplus k F$ be a quaternion algebra
## over the field $F$ of cyclotomics, with basis $(e,i,j,k)$.
##
## If $v = v_1 + v_2 j$ is a row vector over $A$ with $v_1 = e w_1 + i w_2$
## and $v_2 = e w_3 + i w_4$ then `ComplexificationQuat( $v$ )' is the
## concatenation of $w_1 + `E(4)' w_2$ and $w_3 + `E(4)' w_4$.
##
## If $M = M_1 + M_2 j$ is a matrix over $A$ with $M_1 = e N_1 + i N_2$
## and $M_2 = e N_3 + i N_4$ then `ComplexificationQuat( <M> )' is the
## block matrix $A$ over $e F \oplus i F$ such that $A(1,1)=N_1 + `E(4)' N_2$,
## $A(2,2)=N_1 - `E(4)' N_2$, $A(1,2)=N_3 + `E(4)' N_4$ and $A(2,1)=
## - N_3 + `E(4)' N_4$.
#% \[ \left( \begin{array}{rr}
#% N_1 + `E(4)' N_2 & N_3 + `E(4)' N_4 \\
#% - N_3 + `E(4)' N_4 & N_1 - `E(4)' N_2
#% \end{array} \right) \]
##
## Then `ComplexificationQuat(<v>)*ComplexificationQuat(<M>)=
## ComplexificationQuat(<v>*<M>)', since
## $$
## v M = v_1 M_1 + v_2 j M_1 + v_1 M_2 j + v_2 j M_2 j
## = ( v_1 M_1 - v_2 \overline{M_2} ) %
## + ( v_1 M_2 + v_2 \overline{M_1} ) j\.
## $$
##
DeclareGlobalFunction( "ComplexificationQuat" );
#############################################################################
##
#F OctaveAlgebra( <F> )
##
## The algebra of octonions over <F>.
##
DeclareGlobalFunction( "OctaveAlgebra" );
#############################################################################
##
## FullMatrixFLMLOR( <R>, <n> )
#F FullMatrixAlgebra( <R>, <n> )
#F MatrixAlgebra( <R>, <n> )
#F MatAlgebra( <R>, <n> )
##
## is the full matrix algebra $<R>^{<n>\times <n>}$, for a ring <R> and a
## nonnegative integer <n>.
##
DeclareGlobalFunction( "FullMatrixFLMLOR" );
DeclareSynonym( "FullMatrixAlgebra", FullMatrixFLMLOR );
DeclareSynonym( "MatrixAlgebra", FullMatrixFLMLOR );
DeclareSynonym( "MatAlgebra", FullMatrixFLMLOR );
#############################################################################
##
#F FullMatrixLieAlgebra( <R>, <n> )
#F MatrixLieAlgebra( <R>, <n> )
#F MatLieAlgebra( <R>, <n> )
##
## is the full matrix Lie algebra $<R>^{<n> \times <n>}$, for a ring <R> and a
## nonnegative integer <n>.
##
DeclareGlobalFunction( "FullMatrixLieFLMLOR" );
DeclareSynonym( "FullMatrixLieAlgebra", FullMatrixLieFLMLOR );
DeclareSynonym( "MatrixLieAlgebra", FullMatrixLieFLMLOR );
DeclareSynonym( "MatLieAlgebra", FullMatrixLieFLMLOR );
#############################################################################
##
#C IsMatrixFLMLOR( <obj> ) . . . . . . test if an object is a matrix FLMLOR
##
DeclareSynonym( "IsMatrixFLMLOR", IsFLMLOR and IsRingElementCollCollColl );
#############################################################################
##
#M IsFiniteDimensional( <A> ) . . . . matrix FLMLORs are finite dimensional
##
InstallTrueMethod( IsFiniteDimensional, IsMatrixFLMLOR );
#############################################################################
##
#A CentralIdempotentsOfAlgebra( <A> )
##
## For an associative algebra <A>, this function returns
## a list of central primitive idempotents such that their sum is
## the identity element of <A>. Therefore <A> is required to have an
## identity.
##
## (This is a synonym of `CentralIdempotentsOfSemiring'.)
#T add crossref. as soon as this is available
##
DeclareSynonym( "CentralIdempotentsOfAlgebra",
CentralIdempotentsOfSemiring );
#############################################################################
##
#A LeviMalcevDecomposition( <L> )
##
## A Levi-Malcev subalgebra of the algebra <L> is a semisimple subalgebra
## complementary to the radical of <L>. This function returns
## a list with two components. The first component is a Levi-Malcev
## subalgebra, the second the radical. This function is implemented for
## associative and Lie algebras.
##
DeclareAttribute( "LeviMalcevDecomposition", IsAlgebra );
#############################################################################
##
#F CentralizerInFiniteDimensionalAlgebra( <A>, <S>, <issubset> )
##
## is the centralizer of the list <S> in the algebra <A>, that is, the set
## $\{ a \in A; a s = s a \forall s \in S \}$.
##
## <issubset> must be either `true' or `false', where the former means that
## <S> is known to be contained in <A>.
## If <S> is not known to be contained in <A> then the centralizer of <S> in
## the closure of <A> and <S> is computed, the result is the intersection of
## this with <A>.
##
DeclareGlobalFunction( "CentralizerInFiniteDimensionalAlgebra" );
#############################################################################
##
#O IsNilpotentElement( <L>, <x> )
##
## <x> is nilpotent in <L> if its adjoint matrix is a nilpotent matrix.
##
##
DeclareOperation( "IsNilpotentElement",
[ IsAlgebra, IsRingElement ] );
DeclareSynonym( "IsLieNilpotentElement", IsNilpotentElement);
#############################################################################
##
#A Grading( <A> )
##
## Let $G$ be an Abelian group and $A$ an algebra. Then $A$ is said to
## be graded over $G$ if for every $g \in G$ there is a subspace $A_g$
## of $A$ such that $A_g \cdot A_h \subset A_{g+h}$ for $g, h \in G$.
## In \GAP~4 a *grading* of an algebra is a record containing the following
## components:
## \beginitems
## `source'&
## the Abelian group over which the algebra is graded.
## `hom_components'&
## a function assigning to each element from the
## source a subspace of the algebra.
## `min_degree'&
## in the case where the algebra is graded over the integers
## this is the minimum number for which `hom_components' returns a nonzero
## subspace.
## `max_degree'&
## is analogous to `min_degree'.
## \enditems
## We note that there are no methods to compute a grading of an
## arbitrary algebra; however some algebras get a natural grading when
## they are constructed (see "ref:JenningsLieAlgebra",
## "ref:NilpotentQuotientOfFpLieAlgebra").
##
## We note also that these components may be not enough to handle
## the grading efficiently, and another record component may be needed.
## For instance in a Lie algebra $L$ constructed by
## `JenningsLieAlgebra', the length of the of the range
## `[ Grading(L)!.min_degree .. Grading(L)!.max_degree ]' may be
## non-polynomial in the dimension of $L$.
## To handle efficiently this situation, an optional component can be
## used:
## \beginitems
## `non_zero_hom_components'&
## the subset of `source' for which `hom_components' returns a nonzero
## subspace.
## \enditems
##
DeclareAttribute( "Grading", IsAlgebra );
#############################################################################
##
#E algebra.gd . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|