1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
#############################################################################
##
#W basis.gd GAP library Thomas Breuer
##
#H @(#)$Id: basis.gd,v 4.57 2002/05/22 15:30:41 gap Exp $
##
#Y Copyright (C) 1996, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for bases of free left modules.
##
#############################################################################
#1
## In {\GAP}, a *basis* of a free left $F$-module $V$ is a list of vectors
## $B = [ v_1, v_2, \ldots, v_n ]$ in $V$ such that $V$ is generated as a
## left $F$-module by these vectors and such that $B$ is linearly
## independent over $F$.
## The integer $n$ is the dimension of $V$ (see~"Dimension").
## In particular, as each basis is a list (see Chapter~"Lists"),
## it has a length (see~"Length"), and the $i$-th vector of $B$ can be
## accessed as $B[i]$.
## \beginexample
## gap> V:= Rationals^3;
## ( Rationals^3 )
## gap> B:= Basis( V );
## CanonicalBasis( ( Rationals^3 ) )
## gap> Length( B );
## 3
## gap> B[1];
## [ 1, 0, 0 ]
## \endexample
##
## The operations described below make sense only for bases of *finite*
## dimensional vector spaces.
## (In practice this means that the vector spaces must be *low* dimensional,
## that is, the dimension should not exceed a few hundred.)
##
## Besides the basic operations for lists
## (see~"Basic Operations for Lists"),
## the *basic operations for bases* are `BasisVectors' (see~"BasisVectors"),
## `Coefficients' (see~"Coefficients"),
## `LinearCombination' (see~"LinearCombination"),
## and `UnderlyingLeftModule' (see~"UnderlyingLeftModule").
## These and other operations for arbitrary bases are described
## in~"Operations for Vector Space Bases".
##
## For special kinds of bases, further operations are defined
## (see~"Operations for Special Kinds of Bases").
##
## {\GAP} supports the following three kinds of bases.
##
## *Relative bases* delegate the work to other bases of the same
## free left module, via basechange matrices (see~"RelativeBasis").
##
## *Bases handled by nice bases* delegate the work to bases
## of isomorphic left modules over the same left acting domain
## (see~"Vector Spaces Handled By Nice Bases").
##
## Finally, of course there must be bases in {\GAP} that really do the work.
##
## For example, in the case of a Gaussian row or matrix space <V>
## (see~"Row and Matrix Spaces"),
## `Basis( <V> )' is a semi-echelonized basis (see~"IsSemiEchelonized")
## that uses Gaussian elimination; such a basis is of the third kind.
## `Basis( <V>, <vectors> )' is either semi-echelonized or a relative basis.
## Other examples of bases of the third kind are canonical bases of finite
## fields and of abelian number fields.
##
## Bases handled by nice bases are described
## in~"Vector Spaces Handled By Nice Bases".
## Examples are non-Gaussian row and matrix spaces, and subspaces of finite
## fields and abelian number fields that are themselves not fields.
##
Revision.basis_gd :=
"@(#)$Id: basis.gd,v 4.57 2002/05/22 15:30:41 gap Exp $";
#############################################################################
##
#C IsBasis( <obj> )
##
## In {\GAP}, a *basis* of a free left module is an object that knows how to
## compute coefficients w.r.t.~its basis vectors (see~"Coefficients").
## Bases are constructed by `Basis' (see~"Basis").
## Each basis is an immutable list,
## the $i$-th entry being the $i$-th basis vector.
##
## (See~"Mutable Bases" for mutable bases.)
##
DeclareCategory( "IsBasis", IsHomogeneousList and IsDuplicateFreeList );
#############################################################################
##
#C IsFiniteBasisDefault( <obj> )
##
## Objects in this category are in `IsListDefault', that is, addition and
## multiplication for them is defined as for internally represented lists,
## the result presumably being an internally represented list.
##
DeclareSynonym( "IsFiniteBasisDefault",
IsBasis and IsCopyable and IsListDefault );
#############################################################################
##
#P IsCanonicalBasis( <B> )
##
## If the underlying free left module $V$ of the basis <B> supports a
## canonical basis (see~"CanonicalBasis") then `IsCanonicalBasis' returns
## `true' if <B> is equal to the canonical basis of $V$,
## and `false' otherwise.
##
DeclareProperty( "IsCanonicalBasis", IsBasis );
#############################################################################
##
#P IsCanonicalBasisFullRowModule( <B> )
##
## `IsCanonicalBasisFullRowModule' returns `true' if <B> is the canonical
## basis (see~"IsCanonicalBasis") of a full row module
## (see~"IsFullRowModule"), and `false' otherwise.
##
DeclareProperty( "IsCanonicalBasisFullRowModule", IsBasis );
InstallTrueMethod( IsCanonicalBasis, IsCanonicalBasisFullRowModule );
InstallTrueMethod( IsSmallList,
IsList and IsCanonicalBasisFullRowModule );
#############################################################################
##
#P IsCanonicalBasisFullMatrixModule( <B> )
##
## `IsCanonicalBasisFullMatrixModule' returns `true' if <B> is the canonical
## basis (see~"IsCanonicalBasis") of a full matrix module
## (see~"IsFullMatrixModule"), and `false' otherwise.
##
DeclareProperty( "IsCanonicalBasisFullMatrixModule", IsBasis );
InstallTrueMethod( IsCanonicalBasis, IsCanonicalBasisFullMatrixModule );
InstallTrueMethod( IsSmallList,
IsList and IsCanonicalBasisFullMatrixModule );
#############################################################################
##
#P IsIntegralBasis( <B> )
##
## Let <B> be an $S$-basis of a *field* $F$, say, for a subfield $S$ of $F$,
## and let $R$ and $M$ be the rings of algebraic integers in $S$ and $F$,
## respectively.
## `IsIntegralBasis' returns `true' if <B> is also an $R$-basis of $M$,
## and `false' otherwise.
##
DeclareProperty( "IsIntegralBasis", IsBasis );
#############################################################################
##
#P IsNormalBasis( <B> )
##
## Let <B> be an $S$-basis of a *field* $F$, say, for a subfield $S$ of $F$.
## `IsNormalBasis' returns `true' if <B> is invariant under the Galois group
## (see~"GaloisGroup!of field") of the field extension $F / S$,
## and `false' otherwise.
##
DeclareProperty( "IsNormalBasis", IsBasis );
#############################################################################
##
#P IsSemiEchelonized( <B> )
##
## Let <B> be a basis of a Gaussian row or matrix space $V$, say
## (see~"IsGaussianSpace") over the field $F$.
##
## If $V$ is a row space then <B> is semi-echelonized if the matrix formed
## by its basis vectors has the property that the first nonzero element in
## each row is the identity of $F$,
## and all values exactly below these pivot elements are the zero of $F$
## (cf.~"SemiEchelonMat").
##
## If $V$ is a matrix space then <B> is semi-echelonized if the matrix
## obtained by replacing each basis vector by the concatenation of its rows
## is semi-echelonized (see above, cf.~"SemiEchelonMats").
##
DeclareProperty( "IsSemiEchelonized", IsBasis );
#############################################################################
##
#A BasisVectors( <B> )
##
## For a vector space basis <B>, `BasisVectors' returns the list of basis
## vectors of <B>.
## The lists <B> and `BasisVectors( <B> )' are equal; the main purpose of
## `BasisVectors' is to provide access to a list of vectors that does *not*
## know about an underlying vector space.
##
DeclareAttribute( "BasisVectors", IsBasis );
#############################################################################
##
#A EnumeratorByBasis( <B> )
##
## For a basis <B> of the free left $F$-module $V$ of dimension $n$, say,
## `EnumeratorByBasis' returns an enumerator that loops over the elements of
## $V$ as linear combinations of the vectors of <B> with coefficients the
## row vectors in the full row space (see~"FullRowSpace") of dimension $n$
## over $F$, in the succession given by the default enumerator of this row
## space.
##
DeclareAttribute( "EnumeratorByBasis", IsBasis );
#############################################################################
##
#A StructureConstantsTable( <B> )
##
## Let <B> be a basis of a free left module $R$, say, that is also a ring.
## In this case `StructureConstantsTable' returns a structure constants
## table $T$ in sparse representation, as used for structure constants
## algebras (see Section~"tut:Algebras" of the {\GAP} User's Tutorial).
##
## If <B> has length $n$ then $T$ is a list of length $n+2$.
## The first $n$ entries of $T$ are lists of length $n$.
## $T[ n+1 ]$ is one of $1$, $-1$, or $0$;
## in the case of $1$ the table is known to be symmetric,
## in the case of $-1$ it is known to be antisymmetric,
## and $0$ occurs in all other cases.
## $T[ n+2 ]$ is the zero element of the coefficient domain.
##
## The coefficients w.r.t.~<B> of the product of the $i$-th and $j$-th basis
## vector of <B> are stored in $T[i][j]$ as a list of length $2$;
## its first entry is the list of positions of nonzero coefficients,
## the second entry is the list of these coefficients themselves.
##
## The multiplication in an algebra $A$ with vector space basis <B>
## with basis vectors $[ v_1, \ldots, v_n ]$ is determined by the so-called
## structure matrices $M_k = [ m_{ijk} ]_{ij}, 1 \leq k \leq n$.
## The $M_k$ are defined by $v_i v_j = \sum_k m_{i,j,k} v_k$.
## Let $a = [ a_1, \ldots, a_n ]$ and $b = [ b_1, \ldots, b_n ]$.
## Then
## $$
## ( \sum_i a_i v_i ) ( \sum_j b_j v_j )
## = \sum_{i,j} a_i b_j ( v_i v_j )
## = \sum_k ( \sum_j ( \sum_i a_i m_{i,j,k} ) b_j ) v_k
## = \sum_k ( a M_k b^{tr} ) v_k\.
## $$
##
DeclareAttribute( "StructureConstantsTable", IsBasis );
#############################################################################
##
#A UnderlyingLeftModule( <B> )
##
## For a basis <B> of a free left module $V$, say,
## `UnderlyingLeftModule' returns $V$.
##
## The reason why a basis stores a free left module is that otherwise one
## would have to store the basis vectors and the coefficient domain
## separately.
## Storing the module allows one for example to deal with bases whose basis
## vectors have not yet been computed yet (see~"Basis");
## furthermore, in some cases it is convenient to test membership of a
## vector in the module before computing coefficients w.r.t.~a basis.
#T this happens for example for finite fields and cyclotomic fields
##
DeclareAttribute( "UnderlyingLeftModule", IsBasis );
#############################################################################
##
#O Coefficients( <B>, <v> ) . . . coefficients of <v> w.r. to the basis <B>
##
## Let $V$ be the underlying left module of the basis <B>, and <v> a vector
## such that the family of <v> is the elements family of the family of $V$.
## Then `Coefficients( <B>, <v> )' is the list of coefficients of <v> w.r.t.
## <B> if <v> lies in $V$, and `fail' otherwise.
##
DeclareOperation( "Coefficients", [ IsBasis, IsVector ] );
#############################################################################
##
#O LinearCombination( <B>, <coeff> ) . . . . linear combination w. r.t. <B>
#O LinearCombination( <vectors>, <coeff> )
##
## If <B> is a basis of length $n$, say, and <coeff> is a row vector of the
## same length as <B>, `LinearCombination' returns the vector
## $\sum_{i=1}^n <coeff>[i] \* <B>[i]$.
##
## If <vectors> and <coeff> are homogeneous lists of the same length <n>,
## say, `LinearCombination' returns the vector
## $\sum_{i=1}^n <coeff>[i]\*<vectors>[i]$.
## Perhaps the most important usage is the case where <vectors> forms a
## basis.
##
DeclareOperation( "LinearCombination",
[ IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
#O SiftedVector( <B>, <v> ) . . . . . . residuum of <v> w.r.t. the basis <B>
##
## Let <B> be a semi-echelonized basis (see~"IsSemiEchelonized") of a
## Gaussian row or matrix space $V$ (see~"IsGaussianSpace"),
## and <v> a row vector or matrix, respectively, of the same dimension as
## the elements in $V$.
## `SiftedVector' returns the *residuum* of <v> with respect to <B>, which
## is obtained by successively cleaning the pivot positions in <v> by
## subtracting multiples of the basis vectors in <B>.
## So the result is the zero vector in $V$ if and only if <v> lies in $V$.
##
## <B> may also be a mutable basis (see~"Mutable Bases") of a Gaussian row
## or matrix space.
##
DeclareOperation( "SiftedVector", [ IsBasis, IsVector ] );
#############################################################################
##
#O IteratorByBasis( <B> )
##
## For a basis <B> of the free left $F$-module $V$ of dimension $n$, say,
## `IteratorByBasis' returns an iterator that loops over the elements of $V$
## as linear combinations of the vectors of <B> with coefficients the row
## vectors in the full row space (see~"FullRowSpace") of dimension $n$ over
## $F$, in the succession given by the default enumerator of this row space.
##
DeclareOperation( "IteratorByBasis", [ IsBasis ] );
#############################################################################
##
#A Basis( <V> )
#O Basis( <V>, <vectors> )
#O BasisNC( <V>, <vectors> )
##
## Called with a free left $F$-module <V> as the only argument,
## `Basis' returns an $F$-basis of <V> whose vectors are not further
## specified.
##
## If additionally a list <vectors> of vectors in <V> is given
## that forms an $F$-basis of <V> then `Basis' returns this basis;
## if <vectors> is not linearly independent over $F$ or does not generate
## <V> as a free left $F$-module then `fail' is returned.
##
## `BasisNC' does the same as `Basis' for two arguments,
## except that it does not check whether <vectors> form a basis.
##
## If no basis vectors are prescribed then `Basis' need not compute
## basis vectors; in this case, the vectors are computed in the first call
## to `BasisVectors'.
##
DeclareAttribute( "Basis", IsFreeLeftModule );
DeclareOperation( "Basis", [ IsFreeLeftModule, IsHomogeneousList ] );
DeclareOperation( "BasisNC", [ IsFreeLeftModule, IsHomogeneousList ] );
#############################################################################
##
#A SemiEchelonBasis( <V> )
#O SemiEchelonBasis( <V>, <vectors> )
#O SemiEchelonBasisNC( <V>, <vectors> )
##
## Let <V> be a Gaussian row or matrix vector space over the field $F$
## (see~"IsGaussianSpace", "IsRowSpace", "IsMatrixSpace").
##
## Called with <V> as the only argument,
## `SemiEchelonBasis' returns a basis of <V> that has the property
## `IsSemiEchelonized' (see~"IsSemiEchelonized").
##
## If additionally a list <vectors> of vectors in <V> is given
## that forms a semi-echelonized basis of <V> then `SemiEchelonBasis'
## returns this basis;
## if <vectors> do not form a basis of <V> then `fail' is returned.
##
## `SemiEchelonBasisNC' does the same as `SemiEchelonBasis' for two
## arguments,
## except that it is not checked whether <vectors> form
## a semi-echelonized basis.
##
DeclareAttribute( "SemiEchelonBasis", IsFreeLeftModule );
DeclareOperation( "SemiEchelonBasis",
[ IsFreeLeftModule, IsHomogeneousList ] );
DeclareOperation( "SemiEchelonBasisNC",
[ IsFreeLeftModule, IsHomogeneousList ] );
#T In fact they should be declared for `IsGaussianSpace', or at least for
#T `IsVectorSpace', but the files containing these categories are read later ..
#T (Change this!)
#############################################################################
##
#O RelativeBasis( <B>, <vectors> )
#O RelativeBasisNC( <B>, <vectors> )
##
## A relative basis is a basis of the free left module <V> that delegates
## the computation of coefficients etc. to another basis of <V> via
## a basechange matrix.
##
## Let <B> be a basis of the free left module <V>,
## and <vectors> a list of vectors in <V>.
##
## `RelativeBasis' checks whether <vectors> form a basis of <V>,
## and in this case a basis is returned in which <vectors> are
## the basis vectors; otherwise `fail' is returned.
##
## `RelativeBasisNC' does the same, except that it omits the check.
##
DeclareOperation( "RelativeBasis", [ IsBasis, IsHomogeneousList ] );
DeclareOperation( "RelativeBasisNC", [ IsBasis, IsHomogeneousList ] );
#############################################################################
#2
## There are kinds of free $R$-modules for which efficient computations are
## possible because the elements are ``nice'', for example subspaces of full
## row modules or of full matrix modules.
## In other cases, a ``nice'' canonical basis is known that allows one to do
## the necessary computations in the corresponding row module,
## for example algebras given by structure constants.
##
## In many other situations, one knows at least an isomorphism from the
## given module $V$ to a ``nicer'' free left module $W$,
## in the sense that for each vector in $V$, the image in $W$ can easily be
## computed, and analogously for each vector in $W$, one can compute the
## preimage in $V$.
##
## This allows one to delegate computations w.r.t.~a basis $B$, say, of $V$
## to the corresponding basis $C$, say, of $W$.
## We call $W$ the *nice free left module* of $V$, and $C$ the *nice basis*
## of $B$.
## (Note that it may happen that also $C$ delegates questions to a ``nicer''
## basis.)
## The basis $B$ indicates the intended behaviour by the filter
## `IsBasisByNiceBasis' (see~"IsBasisByNiceBasis"),
## and stores $C$ as value of the attribute `NiceBasis' (see~"NiceBasis").
## $V$ indicates the intended behaviour by the filter `IsHandledByNiceBasis'
## (see~"IsHandledByNiceBasis!for vector spaces"), and stores $W$ as value
## of the attribute `NiceFreeLeftModule' (see~"NiceFreeLeftModule").
##
## The bijection between $V$ and $W$ is implemented by the functions
## `NiceVector' (see~"NiceVector") and `UglyVector' (see~"UglyVector");
## additional data needed to compute images and preimages can be stored
## as value of `NiceFreeLeftModuleInfo' (see~"NiceFreeLeftModuleInfo").
##
#############################################################################
##
#F DeclareHandlingByNiceBasis( <name>, <info> )
#F InstallHandlingByNiceBasis( <name>, <record> )
##
## These functions are used to implement a new kind of free left modules
## that shall be handled via the mechanism of nice bases
## (see~"Vector Spaces Handled By Nice Bases").
##
## <name> must be a string, a filter $f$ with this name is created, and
## a logical implication from $f$ to `IsHandledByNiceBasis'
## (see~"IsHandledByNiceBasis!for vector spaces") is installed.
##
## <record> must be a record with the following components.
## \beginitems
## `detect' &
## a function of four arguments $R$, $l$, $V$, and $z$,
## where $V$ is a free left module over the ring $R$ with generators
## the list or collection $l$, and $z$ is either the zero element of
## $V$ or `false' (then $l$ is nonempty);
## the function returns `true' if $V$ shall lie in the filter $f$,
## and `false' otherwise;
## the return value may also be `fail', which indicates that $V$ is
## *not* to be handled via the mechanism of nice bases at all,
##
## `NiceFreeLeftModuleInfo' &
## the `NiceFreeLeftModuleInfo' method for left modules in $f$,
##
## `NiceVector' &
## the `NiceVector' method for left modules $V$ in $f$;
## called with $V$ and a vector $v \in V$, this function returns the
## nice vector $r$ associated with $v$, and
##
## `UglyVector' &
## the `UglyVector' method for left modules $V$ in $f$;
## called with $V$ and a vector $r$ in the `NiceFreeLeftModule' value
## of $V$, this function returns the vector $v \in V$ to which $r$ is
## associated.
## \enditems
##
## The idea is that all one has to do for implementing a new kind of free
## left modules handled by the mechanism of nice bases is to call
## `DeclareHandlingByNiceBasis' and `InstallHandlingByNiceBasis',
## which causes the installation of the necessary methods and adds the pair
## $[ f, `<record>\.detect' ]$ to the global list `NiceBasisFiltersInfo'.
## The `LeftModuleByGenerators' methods call `CheckForHandlingByNiceBasis'
## (see~"CheckForHandlingByNiceBasis"), which sets the appropriate filter
## for the desired left module if applicable.
##
DeclareGlobalFunction( "DeclareHandlingByNiceBasis" );
DeclareGlobalFunction( "InstallHandlingByNiceBasis" );
#############################################################################
##
#V NiceBasisFiltersInfo
##
## An overview of all kinds of vector spaces that are currently handled by
## nice bases is given by the global list `NiceBasisFiltersInfo'.
## Examples of such vector spaces are vector spaces of field elements
## (but not the fields themselves) and non-Gaussian row and matrix spaces
## (see~"IsGaussianSpace").
##
BindGlobal( "NiceBasisFiltersInfo", [] );
#############################################################################
##
#F CheckForHandlingByNiceBasis( <R>, <gens>, <M>, <zero> )
##
## Whenever a free left module is constructed for which the filter
## `IsHandledByNiceBasis' may be useful,
## `CheckForHandlingByNiceBasis' should be called.
## (This is done in the methods for `VectorSpaceByGenerators',
## `AlgebraByGenerators', `IdealByGenerators' etc.~in the {\GAP} library.)
##
## The arguments of this function are the coefficient ring <R>, the list
## <gens> of generators, the constructed module <M> itself, and the zero
## element <zero> of <M>;
## if <gens> is nonempty then the <zero> value may also be `false'.
##
DeclareGlobalFunction( "CheckForHandlingByNiceBasis" );
InstallGlobalFunction( "DeclareHandlingByNiceBasis", function( name, info )
local len, i;
len:= Length( NiceBasisFiltersInfo );
for i in [ len, len-1 .. 1 ] do
NiceBasisFiltersInfo[ i+1 ]:= NiceBasisFiltersInfo[i];
od;
DeclareFilter( name );
NiceBasisFiltersInfo[1]:= [ ValueGlobal( name ), info ];
end );
#############################################################################
##
#F IsGenericFiniteSpace( <V> )
##
## If an $F$-vector space <V> is in the filter `IsGenericFiniteSpace' then
## this expresses that <V> consists of elements in a *finite* vector space,
## and that <V> is handled via the mechanism of nice bases (see~"...") in
## the following way.
## (This is the generic treatment of finite vector spaces, better methods
## are installed for various special kinds of finite vector spaces.)
## Let $F$ be of order $q$, $e_F$ a list of the elements of $F$,
## $B = [ b_0, b_1, \ldots, b_k ]$ an $F$-basis of $V$,
## and let $e_V$ a list of elements of $V$ with the property that
## $e_V[ 1 + \sum_{i=0}^k c_i q^i ] = \sum_{i=0}^k e_F[ c_i + 1 ] b_i$;
## then the `NiceVector' value of $e_V[ 1 + \sum_{i=0}^k c_i q^i ]$ is the
## row vector $[ r_0, r_1, \ldots, r_k ]$ with $r_i = e_F[ c_i + 1 ]$,
## and the `UglyVector' value of $[ r_0, r_1, \ldots, r_k ]$ is
## $\sum_{i=0}^k r_i b_i$.
##
## The `NiceFreeLeftModuleInfo' value of $V$ is a record with the following
## components.
## \beginitems
## `elements' : \\
## a *strictly sorted* list $\tilde{e}_V$ of elements of $V$,
##
## `numbers' : \\
## a list $l$ of the positive integers up to $q^{k+1}$, such that
## $e_V[ l[i] ] = \tilde{e}_V[i]$ holds for $1 \leq i \leq q^{k+1}$.
##
## `q' &
## the size of $F$,
##
## `fieldelements' &
## the list $e_F$,
##
## `base' &
## the list $B$.
## \enditems
#T use that the nice module is a full row space!
#T (special method for NiceFreeLeftModule?)
##
#T It is important that all other filters of this kind are installed *later*
#T because otherwise the generic treatment may be chosen in cases for which
#T a later filter indicates better methods.
##
DeclareHandlingByNiceBasis( "IsGenericFiniteSpace",
"for finite vector spaces (generic)" );
#############################################################################
##
#F IsSpaceOfRationalFunctions( <V> )
##
## If an $F$-vector space <V> is in the filter `IsSpaceOfRationalFunctions'
## then this expresses that <V> consists of rational functions,
## and that <V> is handled via the mechanism of nice bases in the following
## way.
## Let $v_1, v_2, \ldots, v_k$ be vector space generators of <V>,
## let $d$ be a polynomial such that all $d \cdot v_i$ are polynomials,
## and let $S$ be the set of monomials that occur in these polynomials.
## Then the `NiceFreeLeftModuleInfo' value of <V> is a record with the
## following components.
## \beginitems
## `family' &
## the elements family of <V>,
##
## `monomials' &
## the list $S$,
##
## `denom' &
## the polynomial $d$,
##
## `zerocoeff' &
## the zero coefficient of elements in <V>,
##
## `zerovector' &
## the zero row vector in the nice free left module.
## \enditems
## The `NiceVector' value of $v \in <V>$ is defined as the row vector of
## coefficients of $v$ w.r.t.~$S$.
##
## Finite dimensional free left modules of rational functions
## are by default handled via the mechanism of nice bases.
##
DeclareHandlingByNiceBasis( "IsSpaceOfRationalFunctions",
"for free left modules of rational functions" );
#############################################################################
##
#C IsBasisByNiceBasis( <B> )
##
## This filter indicates that the basis <B> delegates tasks such as the
## computation of coefficients (see~"Coefficients") to a basis of an
## isomorphisc ``nicer'' free left module.
#T Any object in `IsBasisByNiceBasis' must be a *small* list in the sense of
#T `IsSmallList' (see~"IsSmallList").
##
DeclareCategory( "IsBasisByNiceBasis", IsBasis and IsSmallList );
#############################################################################
##
#A NiceBasis( <B> )
##
## Let <B> be a basis of a free left module <V> that is handled via
## nice bases.
## If <B> has no basis vectors stored at the time of the first call to
## `NiceBasis' then `NiceBasis( <B> )' is obtained as
## `Basis( NiceFreeLeftModule( <V> ) )'.
## If basis vectors are stored then `NiceBasis( <B> )' is the result of the
## call of `Basis' with arguments `NiceFreeLeftModule( <V> )'
## and the `NiceVector' values of the basis vectors of <B>.
##
## Note that the result is `fail' if and only if the ``basis vectors''
## stored in <B> are in fact not basis vectors.
##
## The attributes `GeneratorsOfLeftModule' of the underlying left modules
## of <B> and the result of `NiceBasis' correspond via `NiceVector' and
## `UglyVector'.
##
DeclareAttribute( "NiceBasis", IsBasisByNiceBasis );
#############################################################################
##
#O NiceBasisNC( <B> )
##
## If the basis <B> has basis vectors bound then the attribute `NiceBasis'
## of <B> is set to `BasisNC( <W>, <nice> )'
## where <W> is the value of `NiceFreeLeftModule' for the underlying
## free left module of <B>.
## This means that it is *not* checked whether <B> really is a basis.
##
DeclareOperation( "NiceBasisNC", [ IsBasisByNiceBasis ] );
#############################################################################
##
#A NiceFreeLeftModule( <V> ) . . . . nice free left module isomorphic to <V>
##
## For a free left module <V> that is handled via the mechanism of nice
## bases, this attribute stores the associated free left module to which the
## tasks are delegated.
##
DeclareAttribute( "NiceFreeLeftModule", IsFreeLeftModule );
#############################################################################
##
#A NiceFreeLeftModuleInfo( <V> )
##
## For a free left module <V> that is handled via the mechanism of nice
## bases, this operation has to provide the necessary information (if any)
## for calls of `NiceVector' and `UglyVector' (see~"NiceVector").
##
DeclareAttribute( "NiceFreeLeftModuleInfo",
IsFreeLeftModule and IsHandledByNiceBasis );
#############################################################################
##
#O NiceVector( <V>, <v> )
#O UglyVector( <V>, <r> )
##
## `NiceVector' and `UglyVector' provide the linear bijection between the
## free left module <V> and `<W>:= NiceFreeLeftModule( <V> )'.
##
## If <v> lies in the elements family of the family of <V> then
## `NiceVector( <v> )' is either `fail' or an element in the elements family
## of the family of <W>.
##
## If <r> lies in the elements family of the family of <W> then
## `UglyVector( <r> )' is either `fail' or an element in the elements family
## of the family of <V>.
##
## If <v> lies in <V> (which usually *cannot* be checked without using <W>)
## then `UglyVector( <V>, NiceVector( <V>, <v> ) ) = <v>'.
## If <r> lies in <W> (which usually *can* be checked)
## then `NiceVector( <V>, UglyVector( <V>, <r> ) ) = <r>'.
##
## (This allows one to implement for example a membership test for <V>
## using the membership test in <W>.)
##
DeclareOperation( "NiceVector",
[ IsFreeLeftModule and IsHandledByNiceBasis, IsObject ] );
DeclareOperation( "UglyVector",
[ IsFreeLeftModule and IsHandledByNiceBasis, IsObject ] );
#############################################################################
##
#F BasisWithReplacedLeftModule( <B>, <V> )
##
## For a basis <B> and a left module <V> that is equal to the underlying
## left module of <B>,
## `BasisWithReplacedLeftModule' returns a basis equal to <B> except that
## the underlying left module of this basis is <V>.
##
DeclareGlobalFunction( "BasisWithReplacedLeftModule" );
#############################################################################
##
#E
|