1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
#############################################################################
##
#W combinat.gd GAP library Martin Schoenert
#W Alexander Hulpke
##
#H @(#)$Id: combinat.gd,v 4.13 2003/03/10 08:14:19 gap Exp $
##
#Y Copyright (C) 1996, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains declaration for combinatorics functions.
##
Revision.combinat_gd :=
"@(#)$Id: combinat.gd,v 4.13 2003/03/10 08:14:19 gap Exp $";
#############################################################################
##
#F Factorial( <n> ) . . . . . . . . . . . . . . . . factorial of an integer
##
## returns the *factorial* $n!$ of the positive integer <n>, which is
## defined as the product $1 . 2 . 3 \cdots n$.
##
## $n!$ is the number of permutations of a set of $n$ elements. $1/n!$
## is the coefficient of $x^n$ in the formal series $e^x$, which is
## the generating function for factorial.
##
DeclareGlobalFunction("Factorial");
#############################################################################
##
#F Binomial( <n>, <k> ) . . . . . . . . . binomial coefficient of integers
##
## returns the *binomial coefficient* ${n \choose k}$ of integers <n> and
## <k>, which is defined as $n! / (k! (n-k)!)$ (see "Factorial"). We
## define ${0 \choose 0} = 1, {n \choose k} = 0$ if $k\<0$ or $n\<k$,
## and ${n \choose k} = (-1)^k {-n+k-1 \choose k}$ if $n \< 0$, which
## is consistent with the equivalent definition
## ${n \choose k} = {n-1 \choose k} + {n-1 \choose k-1}.$
##
## ${n \choose k}$ is the number of combinations with $k$ elements, i.e.,
## the number of subsets with $k$ elements, of a set with $n$ elements.
## ${n \choose k}$ is the coefficient of the term $x^k$ of the polynomial
## $(x + 1)^n$, which is the generating function for ${n \choose .},$ hence
## the name.
##
DeclareGlobalFunction("Binomial");
#############################################################################
##
#F Bell( <n> ) . . . . . . . . . . . . . . . . . value of the Bell sequence
##
## returns the *Bell number* $B(n)$. The Bell numbers are defined by
## $B(0)=1$ and the recurrence $B(n+1) = \sum_{k=0}^{n}{{n \choose k}B(k)}$.
##
## $B(n)$ is the number of ways to partition a set of <n> elements
## into pairwise disjoint nonempty subsets (see "PartitionsSet"). This
## implies of course that $B(n) = \sum_{k=0}^{n}{S_2(n,k)}$ (see
## "Stirling2"). $B(n)/n!$ is the coefficient of $x^n$ in the formal
## series $e^{e^x-1}$, which is the generating function for $B(n)$.
##
DeclareGlobalFunction("Bell");
#############################################################################
##
#F Stirling1( <n>, <k> ) . . . . . . . . . Stirling number of the first kind
##
## returns the *Stirling number of the first kind* $S_1(n,k)$ of the
## integers <n> and <k>. Stirling numbers of the first kind are defined by
## $S_1(0,0) = 1$, $S_1(n,0) = S_1(0,k) = 0$ if $n, k \ne 0$ and the
## recurrence $S_1(n,k) = (n-1) S_1(n-1,k) + S_1(n-1,k-1)$.
##
## $S_1(n,k)$ is the number of permutations of <n> points with <k>
## cycles. Stirling numbers of the first kind appear as coefficients in
## the series $n! {x \choose n} = \sum_{k=0}^{n}{S_1(n,k) x^k}$ which is
## the generating function for Stirling numbers of the first kind. Note
## the similarity to $x^n = \sum_{k=0}^{n}{S_2(n,k) k! {x \choose k}}$
## (see "Stirling2"). Also the definition of $S_1$ implies $S_1(n,k) =
## S_2(-k,-n)$ if $n,k\<0$. There are many formulae relating Stirling
## numbers of the first kind to Stirling numbers of the second kind, Bell
## numbers, and Binomial coefficients.
##
DeclareGlobalFunction("Stirling1");
#############################################################################
##
#F Stirling2( <n>, <k> ) . . . . . . . . Stirling number of the second kind
##
## returns the *Stirling number of the second kind* $S_2(n,k)$ of the
## integers <n> and <k>. Stirling numbers of the second kind are
## defined by $S_2(0,0) = 1$, $S_2(n,0) = S_2(0,k) = 0$ if $n, k \ne 0$
## and the recurrence $S_2(n,k) = k S_2(n-1,k) + S_2(n-1,k-1)$.
##
## $S_2(n,k)$ is the number of ways to partition a set of <n> elements
## into <k> pairwise disjoint nonempty subsets (see "PartitionsSet").
## Stirling numbers of the second kind appear as coefficients in the
## expansion of $x^n = \sum_{k=0}^{n}{S_2(n,k) k! {x \choose k}}$. Note
## the similarity to $n! {x \choose n} = \sum_{k=0}^{n}{S_1(n,k) x^k}$
## (see "Stirling1"). Also the definition of $S_2$ implies $S_2(n,k) =
## S_1(-k,-n)$ if $n,k\<0$. There are many formulae relating Stirling
## numbers of the second kind to Stirling numbers of the first kind, Bell
## numbers, and Binomial coefficients.
##
DeclareGlobalFunction("Stirling2");
#############################################################################
##
#F Combinations( <mset> [,<k>] )
##
## returns the set of all combinations of the multiset <mset> (a
## list of objects which may contain the same object several times) with <k>
## elements; if <k> is not given it returns all combinations of <mset>.
##
## A *combination* of <mset> is an unordered selection without
## repetitions and is represented by a sorted sublist of <mset>. If
## <mset> is a proper set, there are ${|mset| \choose k}$ (see
## "Binomial") combinations with <k> elements, and the set of all
## combinations is just the *powerset* of <mset>, which contains all
## *subsets* of <mset> and has cardinality $2^{|mset|}$.
##
DeclareGlobalFunction("Combinations");
#############################################################################
##
#F NrCombinations( <mset> [,<k>] )
##
## returns the number of `Combinations(<mset>,<k>)'.
##
DeclareGlobalFunction("NrCombinations");
#############################################################################
##
#F Arrangements( <mset> [,<k>] )
##
## returns the set of arrangements of the multiset <mset> that contain <k>
## elements. If <k> is not given it returns all arrangements of <mset>.
##
## An *arrangement* of <mset> is an ordered selection without
## repetitions and is represented by a list that contains only elements
## from <mset>, but maybe in a different order. If <mset> is a proper
## set there are $|mset|! / (|mset|-k)!$ (see "Factorial")
## arrangements with <k> elements.
##
DeclareGlobalFunction("Arrangements");
#############################################################################
##
#F NrArrangements( <mset> [,<k>] )
##
## returns the number of `Arrangements(<mset>,<k>)'.
##
DeclareGlobalFunction("NrArrangements");
#############################################################################
##
#F UnorderedTuples( <set>, <k> ) . . . . set of unordered tuples from a set
##
## returns the set of all unordered tuples of length <k> of the set <set>.
##
## An *unordered tuple* of length <k> of <set> is a unordered selection
## with repetitions of <set> and is represented by a sorted list of
## length <k> containing elements from <set>. There are ${|set|+k-1
## \choose k}$ (see "Binomial") such unordered tuples.
##
## Note that the fact that `UnorderedTuples' returns a set implies that
## the last index runs fastest. That means the first tuple
## contains the smallest element from <set> <k> times, the second tuple
## contains the smallest element of <set> at all positions except at the
## last positions, where it contains the second smallest element from <set>
## and so on.
##
DeclareGlobalFunction("UnorderedTuples");
#############################################################################
##
#F NrUnorderedTuples( <set>, <k> ) . . number unordered of tuples from a set
##
## returns the number of `UnorderedTuples(<set>,<k>)'.
##
DeclareGlobalFunction("NrUnorderedTuples");
#############################################################################
##
#F Tuples( <set>, <k> ) . . . . . . . . . set of ordered tuples from a set
##
## returns the set of all ordered tuples of length <k> of the set <set>.
##
## An *ordered tuple* of length <k> of <set> is an ordered selection
## with repetition and is represented by a list of length <k> containing
## elements of <set>. There are $|set|^k$ such ordered tuples.
##
## Note that the fact that `Tuples' returns a set implies that the
## last index runs fastest. That means the first tuple contains the
## smallest element from <set> <k> times, the second tuple contains the
## smallest element of <set> at all positions except at the last
## positions, where it contains the second smallest element from <set> and
## so on.
##
DeclareGlobalFunction("Tuples");
#############################################################################
##
#F EnumeratorOfTuples( <set>, <k> )
##
## This function is referred to as an example of enumerators that are
## defined by functions but are not constructed from a domain.
## The result is equal to that of `Tuples( <set>, <k> )'.
## However, the entries are not stored physically in the list but are
## created/identified on demand.
##
## (It might be interesting to add analogous enumerator constructors
## also for other functions that are declared in `lib/combinat.gd'.
## For the moment, *this is kept undocumented* since it is too trivial.)
##
DeclareGlobalFunction( "EnumeratorOfTuples" );
#############################################################################
##
#F NrTuples( <set>, <k> ) . . . . . . . number of ordered tuples from a set
##
## returns the number of `Tuples(<set>,<k>)'.
##
DeclareGlobalFunction("NrTuples");
#############################################################################
##
#F PermutationsList( <mset> ) . . . . . . set of permutations of a multiset
##
## `PermutationsList' returns the set of permutations of the
## multiset <mset>.
##
## A *permutation* is represented by a list that contains exactly the
## same elements as <mset>, but possibly in different order. If <mset>
## is a proper set there are $|mset| !$ (see "Factorial") such
## permutations. Otherwise if the first elements appears $k_1$ times,
## the second element appears $k_2$ times and so on, the number
## of permutations is $|mset|! / (k_1! k_2! \ldots)$, which is
## sometimes called multinomial coefficient.
##
DeclareGlobalFunction("PermutationsList");
#############################################################################
##
#F NrPermutationsList( <mset> ) . . . number of permutations of a multiset
##
## returns the number of `PermutationsList(<mset>)'.
##
DeclareGlobalFunction("NrPermutationsList");
#############################################################################
##
#F Derangements( <list> ) . . . . set of fixpointfree permutations of a list
##
## returns the set of all derangements of the list <list>.
##
## A *derangement* is a fixpointfree permutation of <list> and
## is represented by a list that contains exactly the same elements as
## <list>, but in such an order that the derangement has at no position
## the same element as <list>.
## If the list <list> contains no element twice there are exactly
## $|list|! (1/2! - 1/3! + 1/4! - \cdots + (-1)^n/n!)$ derangements.
##
## Note that the ratio
## `NrPermutationsList([1..n])/NrDerangements([1..n])',
## which is $n! / (n! (1/2! - 1/3! + 1/4! - \cdots + (-1)^n/n!))$
## is an approximation for the base of the natural logarithm
## $e = 2\.7182818285\ldots$, which is correct to about $n$ digits.
##
DeclareGlobalFunction("Derangements");
#############################################################################
##
#F NrDerangements( <list> ) . number of fixpointfree permutations of a list
##
## returns the number of `Derangements(<list>)'.
##
DeclareGlobalFunction("NrDerangements");
#############################################################################
##
#F PartitionsSet( <set> [,<k>] )
##
## returns the set of all unordered
## partitions of the set <set> into <k> pairwise disjoint nonempty sets.
## If <k> is not given it returns all unordered partitions of <set> for all
## <k>.
##
## An *unordered partition* of <set> is a set of pairwise disjoint
## nonempty sets with union <set> and is represented by a sorted list of
## such sets. There are $B( |set| )$ (see "Bell") partitions of the
## set <set> and $S_2( |set|, k )$ (see "Stirling2") partitions with
## <k> elements.
##
DeclareGlobalFunction("PartitionsSet");
#############################################################################
##
#F NrPartitionsSet( <set> [,<k>] )
##
## returns the number of `PartitionsSet(<set>,<k>)'.
##
DeclareGlobalFunction("NrPartitionsSet");
#############################################################################
##
#F Partitions( <n> [,<k>])
##
## returns the set of all (unordered) partitions of the positive integer
## <n> into sums with <k> summands. If <k> is not given it returns
## all unordered partitions of <set> for all <k>.
##
## An *unordered partition* is an unordered sum $n = p_1+p_2 +\cdots+ p_k$
## of positive integers and is represented by the list
## $p = [p_1,p_2,\ldots,p_k]$, in nonincreasing order, i.e.,
## $p_1>=p_2>= \ldots >=p_k$.
## We write $p\vdash n$. There are approximately $e^{\pi \sqrt{2/3 n}}
## / {4 \sqrt{3} n}$ such partitions.
##
## It is possible to associate with every partition of the integer <n>
## a conjugacy class of permutations in the symmetric group on <n> points
## and vice versa. Therefore $p(n) := `NrPartitions'(n)$ is the
## number of conjugacy classes of the symmetric group on <n> points.
##
## Ramanujan found the identities $p(5i+4) = 0$ mod 5, $p(7i+5) = 0$ mod
## 7 and $p(11i+6) = 0$ mod 11 and many other fascinating things about
## the number of partitions.
##
## Do not call `Partitions' with an <n> much larger than 40, in which
## case there are 37338 partitions, since the list will simply become too
## large.
##
DeclareGlobalFunction("PartitionsRecursively");
DeclareGlobalFunction("Partitions");
#############################################################################
##
#F NrPartitions( <n> [,<k>])
##
## returns the number of `Partitions(<set>,<k>)'.
##
DeclareGlobalFunction("NrPartitions");
#############################################################################
##
#F PartitionsGreatestLE( <n>, <m> ) . . . set of partitions of n parts <= n
##
## returns the set of all (unordered) partitions of the integer <n> having
## parts less or equal to the integer <m>.
##
DeclareGlobalFunction("PartitionsGreatestLE");
#############################################################################
##
#F PartitionsGreatestEQ( <n>, <m> ) . . . . set of partitions of n parts = n
##
## returns the set of all (unordered) partitions of the integer <n> having
## greatest part equal to the integer <m>.
##
DeclareGlobalFunction("PartitionsGreatestEQ");
#############################################################################
##
#F OrderedPartitions( <n> [,<k>] )
##
## returns the set of all ordered partitions of the positive integer <n>
## into sums with <k> summands. If <k> is not given it returns all
## ordered partitions of <set> for all <k>.
##
## An *ordered partition* is an ordered sum $n = p_1 + p_2 +\ldots+ p_k$ of
## positive integers and is represented by the list $[ p_1, p_2,\ldots, p_k ]$.
## There are totally $2^{n-1}$ ordered partitions and ${n-1 \choose k-1}$
## (see "Binomial") ordered partitions with <k> summands.
##
## Do not call `OrderedPartitions' with an <n> much larger than 15, the
## list will simply become too large.
##
DeclareGlobalFunction("OrderedPartitions");
#############################################################################
##
#F NrOrderedPartitions( <n> [,<k>] )
##
## returns the number of `OrderedPartitions(<set>,<k>)'.
##
DeclareGlobalFunction("NrOrderedPartitions");
#############################################################################
##
#F RestrictedPartitions( <n>, <set> [,<k>] )
##
## In the first form `RestrictedPartitions' returns the set of all
## restricted partitions of the positive integer <n> into sums with <k>
## summands with the summands of the partition coming from the set
## <set>. If <k> is not given all restricted partitions for all <k> are
## returned.
##
## A *restricted partition* is like an ordinary partition (see
## "Partitions") an unordered sum $n = p_1+p_2+\ldots+p_k$ of positive
## integers and is represented by the list $p = [p_1,p_2,\ldots,p_k]$, in
## nonincreasing order. The difference is that here the $p_i$ must be
## elements from the set <set>, while for ordinary partitions they may be
## elements from `[1..n]'.
##
DeclareGlobalFunction("RestrictedPartitions");
#############################################################################
##
#F NrRestrictedPartitions(<n>,<set> [,<k>] )
##
## returns the number of `RestrictedPartitions(<n>,<set>,<k>)'.
##
DeclareGlobalFunction("NrRestrictedPartitions");
#############################################################################
##
#F SignPartition( <pi> ) . . . . . . . . . . . . . sign of partition <pi>
##
## returns the sign of a permutation with cycle structure <pi>.
##
## This function actually describes a homomorphism from the symmetric
## group $S_n$ into the cyclic group of order 2, whose kernel is
## exactly the alternating group $A_n$ (see "SignPerm"). Partitions of
## sign 1 are called *even* partitions while partitions of sign $-1$ are
## called *odd*.
##
DeclareGlobalFunction("SignPartition");
#############################################################################
##
#F AssociatedPartition( <pi> )
##
## `AssociatedPartition' returns the associated partition of the partition
## <pi> which is obtained by transposing the corresponding Young diagram.
##
DeclareGlobalFunction("AssociatedPartition");
#############################################################################
##
#F PowerPartition( <pi>, <k> ) . . . . . . . . . . . . power of a partition
##
## `PowerPartition' returns the partition corresponding to the <k>-th power
## of a permutation with cycle structure <pi>.
##
## Each part $l$ of <pi> is replaced by $d = \gcd(l, k)$ parts $l/d$. So
## if <pi> is a partition of $n$ then $<pi>^{<k>}$ also is a partition of
## $n$. `PowerPartition' describes the powermap of symmetric groups.
##
DeclareGlobalFunction("PowerPartition");
#############################################################################
##
#F PartitionTuples( <n>, <r> ) . . . . . . . . . <r> partitions with sum <n>
##
## `PartitionTuples' returns the list of all <r>-tuples of partitions which
## together form a partition of <n>.
##
## <r>--tuples of partitions describe the classes and the characters
## of wreath products of groups with <r> conjugacy classes with the
## symmetric group $S_n$.
##
DeclareGlobalFunction("PartitionTuples");
#############################################################################
##
#F NrPartitionTuples( <n>, <r> )
##
## returns the number of `PartitionTuples( <n>, <r> )'.
##
DeclareGlobalFunction("NrPartitionTuples");
#############################################################################
##
#F Lucas(<P>,<Q>,<k>) . . . . . . . . . . . . . . value of a lucas sequence
##
## returns the <k>-th values of the *Lucas sequence* with parameters <P>
## and <Q>, which must be integers, as a list of three integers.
##
## Let $\alpha, \beta$ be the two roots of $x^2 - P x + Q$ then we
## define $Lucas( P, Q, k )[1] = U_k = (\alpha^k - \beta^k) / (\alpha -
## \beta)$ and $Lucas( P, Q, k )[2] = V_k = (\alpha^k + \beta^k)$ and as
## a convenience $Lucas( P, Q, k )[3] = Q^k$.
##
## The following recurrence relations are easily derived from the
## definition $U_0 = 0, U_1 = 1, U_k = P U_{k-1} - Q U_{k-2}$ and $V_0 = 2,
## V_1 = P, V_k = P V_{k-1} - Q V_{k-2}$. Those relations are actually used
## to define `Lucas' if $\alpha = \beta$.
##
## Also the more complex relations used in `Lucas' can be easily derived
## $U_{2k} = U_k V_k, U_{2k+1} = (P U_{2k} + V_{2k}) / 2$ and $V_{2k} =
## V_k^2 - 2 Q^k, V_{2k+1} = ((P^2-4Q) U_{2k} + P V_{2k}) / 2$.
##
## `Fibonacci(<k>)' (see "Fibonacci") is simply `Lucas(1,-1,<k>)[1]'. In
## an abuse of notation, the sequence `Lucas(1,-1,<k>)[2]' is sometimes
## called the Lucas sequence.
##
DeclareGlobalFunction("Lucas");
#############################################################################
##
#F Fibonacci( <n> ) . . . . . . . . . . . . value of the Fibonacci sequence
##
## returns the <n>th number of the *Fibonacci sequence*. The Fibonacci
## sequence $F_n$ is defined by the initial conditions $F_1=F_2=1$ and the
## recurrence relation $F_{n+2} = F_{n+1} + F_{n}$. For negative $n$ we
## define $F_n = (-1)^{n+1} F_{-n}$, which is consistent with the
## recurrence relation.
##
## Using generating functions one can prove that $F_n = \phi^n -
## 1/\phi^n$, where $\phi$ is $(\sqrt{5} + 1)/2$, i.e., one root of $x^2 -
## x - 1 = 0$. Fibonacci numbers have the property $Gcd( F_m, F_n ) =
## F_{Gcd(m,n)}$. But a pair of Fibonacci numbers requires more division
## steps in Euclid's algorithm (see~"Gcd") than any other pair of
## integers of the same size. `Fibonacci(<k>)' is the special case
## `Lucas(1,-1,<k>)[1]' (see "Lucas").
##
DeclareGlobalFunction("Fibonacci");
#############################################################################
##
#F Bernoulli( <n> ) . . . . . . . . . . . . value of the Bernoulli sequence
##
## returns the <n>-th *Bernoulli number* $B_n$, which is defined by $B_0 =
## 1$ and $B_n = -\sum_{k=0}^{n-1}{{n+1 \choose k} B_k}/(n+1)$.
##
## $B_n/n!$ is the coefficient of $x^n$ in the power series of
## $x/{e^x-1}$. Except for $B_1=-1/2$ the Bernoulli numbers for odd
## indices are zero.
##
DeclareGlobalFunction("Bernoulli");
#############################################################################
##
#F Permanent( <mat> ) . . . . . . . . . . . . . . . . permanent of a matrix
##
## returns the *permanent* of the matrix <mat>. The permanent is defined
## by $\sum_{p \in Symm(n)}{\prod_{i=1}^{n}{mat[i][i^p]}}$.
##
## Note the similarity of the definition of the permanent to the
## definition of the determinant (see~"DeterminantMat").
## In fact the only difference is the missing sign of the permutation.
## However the permanent is quite unlike the determinant,
## for example it is not multilinear or alternating.
## It has however important combinatorial properties.
##
DeclareGlobalFunction("Permanent");
#############################################################################
##
#E
|